524 resultados para POLYCHLORINATED BIPHENYL CONGENERS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mass‐balance model for Lake Superior was applied to polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and mercury to determine the major routes of entry and the major mechanisms of loss from this ecosystem as well as the time required for each contaminant class to approach steady state. A two‐box model (water column, surface sediments) incorporating seasonally adjusted environmental parameters was used. Both numerical (forward Euler) and analytical solutions were employed and compared. For validation, the model was compared with current and historical concentrations and fluxes in the lake and sediments. Results for PCBs were similar to prior work showing that air‐water exchange is the most rapid input and loss process. The model indicates that mercury behaves similarly to a moderately‐chlorinated PCB, with air‐water exchange being a relatively rapid input and loss process. Modeled accumulation fluxes of PBDEs in sediments agreed with measured values reported in the literature. Wet deposition rates were about three times greater than dry particulate deposition rates for PBDEs. Gas deposition was an important process for tri‐ and tetra‐BDEs (BDEs 28 and 47), but not for higher‐brominated BDEs. Sediment burial was the dominant loss mechanism for most of the PBDE congeners while volatilization was still significant for tri‐ and tetra‐BDEs. Because volatilization is a relatively rapid loss process for both mercury and the most abundant PCBs (tri‐ through penta‐), the model predicts that similar times (from 2 ‐ 10 yr) are required for the compounds to approach steady state in the lake. The model predicts that if inputs of Hg(II) to the lake decrease in the future then concentrations of mercury in the lake will decrease at a rate similar to the historical decline in PCB concentrations following the ban on production and most uses in the U.S. In contrast, PBDEs are likely to respond more slowly if atmospheric concentrations are reduced in the future because loss by volatilization is a much slower process for PBDEs, leading to lesser overall loss rates for PBDEs in comparison to PCBs and mercury. Uncertainties in the chemical degradation rates and partitioning constants of PBDEs are the largest source of uncertainty in the modeled times to steady‐state for this class of chemicals. The modeled organic PBT loading rates are sensitive to uncertainties in scavenging efficiencies by rain and snow, dry deposition velocity, watershed runoff concentrations, and uncertainties in air‐water exchange such as the effect of atmospheric stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of a hydrophobic biphenyl-C-nucleotide pair into a 11-mer RNA duplex is associated with a net penalty in the free energy of duplex formation of 2.0 kcal mol(-1) or 10 degrees C in T(m), relative to DNA. These differential stabilities are of relevance with respect to the transcriptional and translational aspects of hydrophobic base-pairs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and incorporation into oligonucleotides of C-nucleosides containing the two aromatic, non-hydrogen-bonding nucleobase substitutes biphenyl (I) and bipyridyl (Y) are described. Their homo- and hetero-recognition properties in different sequential arrangements were then investigated via UV-melting curve analysis, gel mobility assays, CD- and NMR spectroscopy. An NMR analysis of a dodecamer duplex containing one biphenyl pair in the center, as well as CD data on duplexes with multiple insertions provide further evidence for the zipper-like interstrand stacking motif that we proposed earlier based on molecular modeling. UV-thermal melting experiments with duplexes containing one to up to seven I- or Y base pairs revealed a constant increase in T(m) in the case of I and a constant decrease for Y. Mixed I/Y base pairs lead to stabilities in between the homoseries. Insertion of alternating I/abasic site- or Y/abasic site pairs strongly decreases the thermal stability of duplexes. Asymmetric distribution of I- or Y residues on either strand of the duplex were also investigated in this context. Duplexes with three natural base pairs at both ends and 50 % of I pairs in the center are still readily formed, while duplexes with blunt ended I pairs tend to aggregate unspecifically. Duplexes with one natural overhang at the end of a I-I base pair tract can both aggregate or form ordered duplexes, depending on the nature of the natural bases in the overhang

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prepared and investigated oligonucleotide duplexes of the sequence d(GATGAC(X)(n)GCTAG)d(CTAGC(Y)(n)GTCATC), in which X and Y designate biphenyl- (bph) and pentafluorobiphenyl- ((5F)bph) C-nucleotides, respectively, and n varies from 0-4. These hydrophobic base substitutes are expected to adopt a zipperlike, interstrand stacking motif, in which not only bph/bph or (5F)bph/(5F)bph homo pairs, but also (5F)bph/bph mixed pairs can be formed. By performing UV-melting curve analysis we found that incorporation of a single (5F)bph/(5F)bph pair leads to a duplex that is essentially as stable as the unmodified duplex (n=0), and 2.4 K more stable than the duplex with the nonfluorinated bph/bph pair. The T(m) of the mixed bph/(5F)bph pair was in between the T(m) values of the respective homo pairs. Additional, unnatural aromatic pairs increased the T(m) by +3.0-4.4 K/couple, irrespective of the nature of the aromatic residue. A thermodynamic analysis using isothermal titration calorimetry (ITC) of a series of duplexes with n=3 revealed lower (less negative) duplex formation enthalpies (DeltaH) in the (5F)bph/(5F)bph case than in the bph/bph case, and confirmed the higher thermodynamic stability (DeltaG) of the fluorinated duplex, suggesting it to be of entropic origin. Our data are compatible with a model in which the stacking of (5F)bph versus bph is dominated by dehydration of the aromatic units upon duplex formation. They do not support a model in which van der Waals dispersive forces (induced dipoles) or electrostatic (quadrupole) interactions play a dominant role