983 resultados para PL-100
Resumo:
Chromium substituted beta diketonate complexes of aluminium have been synthesized and employed as precursors for a novel soft chemistry process wherein microwave irradiation of a solution of the complex yields within minutes well crystallized needles of alpha (Al1 XCrx)(2)O-3 measuring 20 30 nm in diameter and 50 nm long By varying the microwave irradiation parameters and using a surfactant such as polyvinyl pyrrolidone the crystallite size and shape can be controlled and their agglomeration prevented These microstructural parameters as well as the polymorph of the Cr substituted Al2O3 formed may also be controlled by employing a different complex Samples of alpha (Al1 XCrx)(2)O-3 have been characterized by XRD FTIR and TEM The technique results in material of homogeneous metal composition, as shown by EDAX and can be adjusted as desired The technique has been extended to obtain coatings of alpha (Al1 XCrx)(2)O-3 on Si(100)
Resumo:
Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project.
Resumo:
Adsorption of dioxygen at clean Ni(110) and Ni(100) surfaces gives rise to two prominent features in the O(1s) spectra at 530 and 531 eV due to O2- and O- type species, respectively. Interaction of ammonia with a Ni(100)-O surface where theta(oxygen) < 0.1 ML favors the dissociation of NH3 giving NHn, (n = 1, 2) and N(a) species. This is accompanied by a decrease in the intensity of the 531 eV feature. On the other hand. a Ni(100)-O surface where the oxygen species are mainly of the O2- type is unreactive, Coadsorption studies of NH3-O-2 mixtures show that at Ni(110) surfaces the uptake of both oxygen and ammonia increase with the proportion of oxygen in the NH3-O-2 mixture. The surface concentrations of the O- species and the NHn species also increase with the increase in the O-2/NH3 ratio while the slope of the plot of sigma(N) versus sigma(O-) is around unity. The results demonstrate the high surface reactivity of the O- species and its role in the dissociation of ammonia. Based on these observations, the possibility of the formation of a surface complex between ammonia and oxygen (specifically O-) is suggested. Results from vibrational spectroscopic studies of the coadsorption of NH3-O-2 mixtures are consistent with those from core-level spectroscopic studies.
Resumo:
It is known from temperature-programmed desorption studies that the binding energy of thiophene over Mo/gamma-Al2O3 and Co-Mo/gamma-Al2O3, hydrodesulfurization catalysts, is lower in the presence of hydrogen. The adsorption of thiophene on clean and hydrogen-adsorbed MoS2 was modelled using extended Huckel tight binding band structure calculations. In the eta(1) adsorption configuration the calculations show a lower binding energy for adsorption on the hydrogen-preadsorbed surface similar to that observed experimentally. The lowering is due to an increased occupancy of the Mo density of states in the presence of hydrogen.
Resumo:
Several doped 6H hexagonal ruthenates, having the general formula Ba3MRu2O9, have been studied over a significant period of time to understand the unusual magnetism of ruthenium metal. However, among them, the M = Fe compound appears different since it is observed that unlike others, the 3d Fe ions and 4d Ru ions can easily exchange their crystallographic positions, and as a result many possible magnetic interactions become realizable. The present study involving several experimental methods on this compound establishes that the magnetic structure of Ba3FeRu2O9 is indeed very different from all other 6H ruthenates. Local structural study reveals that the possible Fe/Ru site disorder further extends to create local chemical inhomogeneity, affecting the high-temperature magnetism of this material. There is a gradual decrease of Fe-57 Mossbauer spectral intensity with decreasing temperature (below 100 K), which reveals that there is a large spread in the magnetic ordering temperatures, corresponding to many spatially inhomogeneous regions. However, finally at about 25 K, the whole compound is found to take up a global glasslike magnetic ordering.
Resumo:
Synthesis of short peptides using propargyloxycarbonyl amino acid chlorides as effective coupling reagents and polymer supported tetrathiomolybdate as an efficient deblocking agent are reported.
Resumo:
In this paper, we report the results pretaining to the study of the structural, microstructural and the dielectric properties of poly(I-lithocholic acid) (PL), and the composite of PL dispersed in PMMA. The density of the composites was measured using Archimedes principle. The microstructural properties of the composities were studied using XRD and SEM techniques, which give an idea about the dispersion of the polymer PL in the PMMA matrix. The dielectric constants er of the composites were measured with a HP 4194A Impedance/Gain-Phase Analyzer in the frequency range 100 Hz-40 MHz at room temperature. The dielectric constants of the composites at different frequencies were predicted using Clasius-Mossotti and Maxwell's models.
Resumo:
Photoluminescence (PL) studies were carried out on a-Se and a few Ge20Se80−xBix and Ge20Se70−xBixTe10 bulk glassy semiconductors at 4.2 K with Ar+ laser as excitation source. While a-Se and samples with lesser at% of Bi show fine structured PL with a large Stokes shift, samples with higher at% of Bi did not show any detectable PL. The investigations show at least three radiative recombination transitions. Features extracted by deconvoluting the experimental spectra show that the discrete gap levels associated with the inherent coordination defects are involved in the PL transitions. Absence of PL in samples with higher Bi at% are explained on the basis of nonradiative transition mechanisms. Overall PL mechanism involving gap levels in chalcogenide glasses is illustrated with the help of a configurational coordinate diagram.
Resumo:
We report the characterization of carbonaceous aluminium oxide, Al2O3:C, films grown on Si(100) by metalorganic chemical vapor deposition. The focus is on the study of the effects of carbon on the dielectric properties of aluminium oxide in a qualitative manner. The carbon present in the aluminium oxide film derives from aluminium acetylacetonate used as the source of aluminium. As-grown films comprise nanometer-sized grains of alumina (∼ 20–50 nm) in an amorphous carbonaceous matrix, as examined by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films are shiny; they are smooth as observed by scanning electron microscopy (SEM). An attempt has been made to explore the defects (viz., oxide charge density) in the aluminium oxide films using room temperature high frequency capacitance – voltage (C-V) and current–voltage (I-V) measurements. The hysteresis and stretch-out in the high frequency C-V plots is indicative of charge trapping. The role of heteroatoms, as characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, in the transport of charge in Al2O3:C films is discussed.
Resumo:
technique, on both semi-insulating and semi-conducting CraAs substrates with (100) orientation, offset by 2° towards (110) direction. Systematic variation of As/Ga was performed to gain an understanding of growth process, type of formation and other related physical properties. The films were characterized by using the variety of techniques, such as SEM, EDAX, HRTEM, XRD, and PL. Optical and electrical properties of undoped CyaAs epilayers are presented with reference to the growth conditions and AsH3/TMGa ratio. Photoluminescence measurements of GaAs epilayers were recorded at 4.2K and shows the emission of free exciton and confirmed their high purity. The dominant residual impurities in GaAs are presented by using PL. Finally, electrochemical depth profiling exhibited almost homogeneous background carrier distribution and excellent abruptness between the thin GaAs epilayer and substrate.
Resumo:
An attempt has been made to study the film-substrate interface by using a sensitive, non- conventional tool. Because of the prospective use of gate oxide in MOSFET devices, we have chosen to study alumina films grown on silicon. Film-substrate interface of alumina grown by MOCVD on Si(100) was studied systematically using spectroscopic ellipsometry in the range 1.5-5.0 eV, supported by cross-sectional SEM, and SIMS. The (ε1,ε2) versus energy data obtained for films grown at 600°C, 700°C, and 750°C were modeled to fit a substrate/interface/film “sandwich”. The experimental results reveal (as may be expected) that the nature of the substrate -film interface depends strongly on the growth temperature. The simulated (ε1,ε2) patterns are in excellent agreement with observed ellipsometric data. The MOCVD precursors results the presence of carbon in the films. Theoretical simulation was able to account for the ellipsometry data by invoking the presence of “free” carbon in the alumina films.
Resumo:
We report crack formation in alumina films grown on Si(100), caused by annealing in a controlled oxidizing ambient. The films were grown in a low-pressure CVD reactor, using aluminium acetylacetonate as precursor. High purity argon and nitrous oxide were employed as carrier and oxidizing gas, respectively. The films were characterized by optical microscopy and SEM/EDAX. The proportion and chemical nature of the heteroatoms, namely C and H, incorporated into the films from the precursor, were characterized by XPS, and FTIR. As-deposited films do not exhibit any cracks, while post-deposition annealing results in cracks. Apart from the delamination of the films, annealing in nitrous oxide ambient leads to an unusual crack geometry, which we term the “railway-track”. These twin cracks are very straight and run parallel to each other for as much as several millimeters. Often, two such linear tracks meet at exactly 90°. Between some of these tracks lie bullet-like structures with very sharp tips, oriented in a specific direction. As cracks are generally activated by residual stress, both thermal and intrinsic, the origins of the stresses that generate these linear cracks are discussed. The redistribution of stress, arising from the removal of C and H during annealing, will also be discussed. An attempt has been made to correlate the formation of cracks with the crystal structure of the film.
Resumo:
The paper reports the operational experience from a 100 kWe gasification power plant connected to the grid in Karnataka. Biomass Energy for Rural India (BERI) is a program that implemented gasification based power generation with an installed capacity of 0.88 MWe distributed over three locations to meet the electrical energy needs in the district of Tumkur. The operation of one 100 kWe power plant was found unsatisfactory and not meeting the designed performance. The Indian Institute of Science, Bangalore, the technology developer, took the initiative to ensure the system operation, capacity building and prove the designed performance. The power plant connected to the grid consists of the IISc gasification system which includes reactor, cooling, cleaning system, fuel drier and water treatment system to meet the producer gas quality for an engine. The producer gas is used as a fuel in Cummins India Limited, GTA 855 G model, turbo charged engine and the power output is connected to the grid. The system has operated for over 1000 continuous hours, with only about 70 h of grid outages. The total biomass consumption for 1035 h of operation was 111 t at an average of 107 kg/h. Total energy generated was 80.6 MWh reducing over loot of CO(2) emissions. The overall specific fuel consumption was about 1.36 kg/kWh, amounting to an overall efficiency from biomass to electricity of about 18%. The present operations indicate that a maintenance schedule for the plant can be at the end of 1000 h. The results for another 1000 h of operation by the local team are also presented. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
The band offsets in InN/p-Si heterojunctions are determined by high resolution x-ray photoemission spectroscopy. The valence band of InN is found to be 1.39 eV below that of Si. Given the bandgap of 0.7 eV for InN, a type-III heterojunction with a conduction band offset of 1.81 eV was found. Agreement between the simulated and experimental data obtained from the heterojunction spectra was found to be excellent, establishing that the method of determination was accurate. The charge neutrality level (CNL) model provided a reasonable description of the band alignment of the InN/p-Si interface and a change in the interface dipole by 0.06 eV was observed for InN/p-Si interface.