967 resultados para PERMEABILITY
Resumo:
The effects of the reuse of ‘Formtex’ Controlled Permeability Formwork (CPF) liner on strength and durability properties of concrete were investigated at two different water-cement ratios and the results are reported in this paper. Test blocks were cast using the CPF on one side and impermeable formwork (IF) on the opposite side of the mould so that direct comparisons could be made between the two. The strength was assessed using the Limpet pulloff tester and both the air permeability and the water absorption (sorptivity) were measured using the Autoclam Permeability System. Both these instruments measured the ‘covercrete’ properties. In addition, cores cut from the test specimens were subjected to an accelerated carbonation test and a chloride exposure test. The results showed that the ‘Formtex’ CPF increases the surface strength and the durability of concrete compared to the IF. There was an almost complete elimination of blowholes. The permeability of concrete decreased and its resistance to the ingress of both carbon dioxide and chlorides increased when CPF was used. The beneficial effects of the Formtex CPF were most evident in concrete of higher water-cement ratio. With the reuse of the Formtex liner twice, that is a total of three uses, the performance of the CPF to improve the properties of concrete remained almost the same. In this research the CPF liner was cleaned thoroughly between each use, which must be adhered to for site applications for reproducing the beneficial effects observed in the laboratory.
Resumo:
Matrix metalloproteinases (MMPs) degrade all of the extracellular matrix components of the intersititium and may play a role in abnormal alveolar permeability, which is a feature of idiopathic pulmonary fibrosis (IPF). The aims of the present study were to evaluate MMP protein levels in patients with IPF and determine any relationship to treatment and markers of permeability.
Resumo:
The ability to predict the behavior of masonry materials is crucial to conserve building stone. Natural stone, such as sandstone, is not immune from the processes of weathering in the built environment and suffers from decay by granular disintegration, contour scaling, and multiple flaking. Spatial variation of rock properties is a major contributing factor to inconsistent responses to weathering. This has implications for moisture movement and salt input and output and storage, and results in unpredictability in the decay dynamics of masonry materials. This article explores the use of variography and kriging to investigate the spatial interactions between the trigger factors of stone decay, in particular, permeability and its effect on salt penetration. Sandstone blocks were used to represent fresh building stones from a weathering perspective and gave baseline characteristics for the interpretation of subsequent deterioration and decay pathways. Simulated weathering trials involved preloading a sandstone block with salt and subjecting a separate block to 20 cycles of a weathering trial designed to simulate a temperate weathering regime. Geostatistical analysis indicated differences in the spatial variation of permeability of the fresh rock and that subjected to the weathering regimes. Spatial prediction and visualization showed differences in the spatial continuity of permeability in a horizontal and vertical direction through the preloaded block after salt weathering. Continual wetting with salt and alternate heating increased permeability in a vertical direction, enabling the ingress and movement of salt and moisture more effectively through the stone.
Resumo:
This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.
Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.
Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.
After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.
Resumo:
Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.
Resumo:
Although it is well known that sandstone porosity and permeability are controlled by a range of parameters such as grain size and sorting, amount, type, and location of diagenetic cements, extent and type of compaction, and the generation of intergranular and intragranular secondary porosity, it is less constrained how these controlling parameters link up in rock volumes (within and between beds) and how they spatially interact to determine porosity and permeability. To address these unknowns, this study examined Triassic fluvial sandstone outcrops from the UK using field logging, probe permeametry of 200 points, and sampling at 100 points on a gridded rock surface. These field observations were supplemented by laser particle-size analysis, thin-section point-count analysis of primary and diagenetic mineralogy, quantitiative XRD mineral analysis, and SEM/EDAX analysis of all 100 samples. These data were analyzed using global regression, variography, kriging, conditional simulation, and geographically weighted regression to examine the spatial relationships between porosity and permeability and their potential controls. The results of bivariate analysis (global regression) of the entire outcrop dataset indicate only a weak correlation between both permeability porosity and their diagenetic and depositional controls and provide very limited information on the role of primary textural structures such as grain size and sorting. Subdividing the dataset further by bedding unit revealed details of more local controls on porosity and permeability. An alternative geostatistical approach combined with a local modelling technique (geographically weighted regression; GWR) subsequently was used to examine the spatial variability of porosity and permeability and their controls. The use of GWR does not require prior knowledge of divisions between bedding units, but the results from GWR broadly concur with results of regression analysis by bedding unit and provide much greater clarity of how porosity and permeability and their controls vary laterally and vertically. The close relationship between depositional lithofacies in each bed, diagenesis, and permeability, porosity demonstrates that each influences the other, and in turn how understanding of reservoir properties is enhanced by integration of paleoenvironmental reconstruction, stratigraphy, mineralogy, and geostatistics.
Resumo:
Nonsteroidal anti-inflammatory drug (NSAID)-induced increased intestinal permeability appears to be a prerequisite for NSAID enteropathy. It has been suggested that early metabolic events leading to the permeability changes may involve inhibition of glycolysis and the tricarboxylic acid cycle, in which case the coadministration of glucose and citrate (the substrates for these metabolic pathways) with indomethacin may afford some protection. The present study, using a combined intestinal absorption-permeability test including 3-O-methyl-D-glucose, D-xylose, L-rhamnose, and [51Cr]ethylene-diaminetetraacetic acid (EDTA) as test probes and the differential urine excretion ratio of [51Cr]-EDTA/L-rhamnose, showed that indomethacin (50 + 75 mg) increased intestinal permeability. A formulation of indomethacin containing 15 mg glucose and 15 mg citrate to each milligram of indomethacin did not increase intestinal permeability significantly above baseline values. When given alone with indomethacin, neither glucose nor citrate (45 mg to each milligram of indomethacin) had any protective effects. Pharmokinetic studies showed that the effects of glucose and citrate cannot be explained on the basis of altered drug absorption. These results suggest a new approach to reducing the small intestinal side effects of NSAIDs.
Resumo:
Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation.