919 resultados para Optimal Stochastic Control
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pregnancy affects both maternal and fetal metabolism, and even in non-diabetic women, it exerts a diabetogenic effect. Among pregnant women, 2% to 14% develop gestational diabetes. Pregnancy can also occur in women with preexisting diabetes, which may predispose the fetus to many alterations in organogenesis, restrict growth, and the mother, to some diabetes-related complications, such as retinopathy and nephropathy, or to acceleration of the course of these complications, if they are already present. Women with gestational diabetes generally start their treatment with diet and lifestyle changes; when these changes are not enough for optimal glycemic control, insulin therapy must then be considered. Women with type 2 diabetes using oral hypoglycemic agents are advised to change to insulin therapy. Those with preexisting type 1 diabetes should start intensive glycemic control. As basal insulin analogues have frequently been used off-label in pregnant women, there is a need to evaluate their safety and efficacy. The aim of this review is to report the use of both short- and long-acting insulin analogues during pregnancy and to enable clinicians, obstetricians, and endocrinologists to choose the best insulin treatment for their patients.
Resumo:
Quality control of medical radiological systems is of fundamental importance, and requires efficient methods for accurately determine the X-ray source spectrum. Straightforward measurements of X-ray spectra in standard operating require the limitation of the high photon flux, and therefore the measure has to be performed in a laboratory. However, the optimal quality control requires frequent in situ measurements which can be only performed using a portable system. To reduce the photon flux by 3 magnitude orders an indirect technique based on the scattering of the X-ray source beam by a solid target is used. The measured spectrum presents a lack of information because of transport and detection effects. The solution is then unfolded by solving the matrix equation that represents formally the scattering problem. However, the algebraic system is ill-conditioned and, therefore, it is not possible to obtain a satisfactory solution. Special strategies are necessary to circumvent the ill-conditioning. Numerous attempts have been done to solve this problem by using purely mathematical methods. In this thesis, a more physical point of view is adopted. The proposed method uses both the forward and the adjoint solutions of the Boltzmann transport equation to generate a better conditioned linear algebraic system. The procedure has been tested first on numerical experiments, giving excellent results. Then, the method has been verified with experimental measurements performed at the Operational Unit of Health Physics of the University of Bologna. The reconstructed spectra have been compared with the ones obtained with straightforward measurements, showing very good agreement.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Metabolic control is central to positive clinical outcome in patients with diabetes. Empowerment has been linked to metabolic control in this clinical group. The current study sought to determine key psychometric properties of the Chinese version of the Diabetes Empowerment Scale (C-DES) and to explore the relationship of the C-DES sub-scales to metabolic control in 189 patients with a diagnosis of diabetes. Confirmatory factor analysis established that the five sub-scales of the C-DES offered a highly satisfactory fit to the data. Furthermore, C-DES sub-scales were found to have generally acceptable internal consistency and divergent reliability. However, convergent reliability of C-DES sub-scales could not be established against metabolic control. It is concluded that future research needs to address ambiguities in the relationship between empowerment and metabolic control in order to afford patients an evidenced-based treatment package to assure optimal metabolic control.
Resumo:
Diabetes mellitus is a condition which requires a high degree of patient cooperation in self-management to achieve optimal glycaemic control. The concept of patient education, to enhance the treatment and management of diabetes, is well recognised. Several diabetes education programmes have already been described, but increased knowledge of diabetes did not necessarily result in improved self-mangement or glycaemic control. Other factors, such as attitudes and motivations, may therefore be particuarly important. The aims of the present study were to investigate the influence of patients' attitudes to diabetes, and to develop motivational aspects which enable the application of knowledge to enhance self-management and compliance with treatment. Thirty-one insulin-dependent diabetic (IDD) patients entered into a 12 month educational programme, particularly designed to increase motivation. Patients' attitudes to diabetes, their knowledge and self-management skills were assessed using questionnaires and practical tests, and parameters of glycaemic control were measured. The progress of these patients was compared at intervals with a close matched group of 25 control IFF patients who continued to receive routine clinic care. Patients completing the educational programme achieved better glycaemic control (p< 0.05), greater knowledge (p< 0.001), more favourable attitudes (p< 0.03) and increased competence in management skills (p< 0.02) compared with the control group. Evaluation procedures indicated that the programme was acceptable to the patients, and was successful in terms of increasing patient motivation. Six months after completion of the programme, glycaemic control deteriorated, although knowledge, attitudes and management skills were unchanged. This might reflect the withdrawal of extrinsic motivation, attention and supervision provided during the programme. It is recommended that consideration be given to the development of patients' intrinsic motivation to achieve maximum benefit from diabetes education programmes.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
The problem of admission control of packets in communication networks is studied in the continuous time queueing framework under different classes of service and delayed information feedback. We develop and use a variant of a simulation based two timescale simultaneous perturbation stochastic approximation (SPSA) algorithm for finding an optimal feedback policy within the class of threshold type policies. Even though SPSA has originally been designed for continuous parameter optimization, its variant for the discrete parameter case is seen to work well. We give a proof of the hypothesis needed to show convergence of the algorithm on our setting along with a sketch of the convergence analysis. Extensive numerical experiments with the algorithm are illustrated for different parameter specifications. In particular, we study the effect of feedback delays on the system performance.
Resumo:
We address the optimal control problem of a very general stochastic hybrid system with both autonomous and impulsive jumps. The planning horizon is infinite and we use the discounted-cost criterion for performance evaluation. Under certain assumptions, we show the existence of an optimal control. We then derive the quasivariational inequalities satisfied by the value function and establish well-posedness. Finally, we prove the usual verification theorem of dynamic programming.
Resumo:
The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.
In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.
This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.
The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.
The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.