Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer.


Autoria(s): Weiss A.; Ding X.; van Beijnum J.R.; Wong I.; Wong T.J.; Berndsen R.H.; Dormond O.; Dallinga M.; Shen L.; Schlingemann R.O.; Pili R.; Ho C.M.; Dyson P.J.; van den Bergh H.; Griffioen A.W.; Nowak-Sliwinska P.
Data(s)

2015

Resumo

Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.

Identificador

http://serval.unil.ch/?id=serval:BIB_0F969B733169

isbn:1573-7209 (Electronic)

pmid:25824484

doi:10.1007/s10456-015-9462-9

isiid:000356451300002

Idioma(s)

en

Fonte

Angiogenesis, vol. 18, no. 3, pp. 233-244

Tipo

info:eu-repo/semantics/article

article