929 resultados para Optimal Linear Control
Resumo:
This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.
Resumo:
The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training
Resumo:
In this work, we carried out a study of the 2208 model servo module Datapool, aiming to make the recognition module and the material that accompanies it, and develop the experiences suggested in their study tours, in order to prove and understand its operation. From this study, three experiments were developed, aimed to familiarizing students with the module, calibrate it, and to control servo motor's speed and position, experiences which can become part of the laboratory of Linear Control, making the learning of concepts just richer, because visually, students can escape the theoretical field and see in practice complex concepts being employed
Resumo:
The spread of infectious disease among and between wild and domesticated animals has become a major problem worldwide. Upon analyzing the dynamics of wildlife growth and infection when the diseased animals cannot be identified separately from healthy wildlife prior to the kill, we find that harvest-based strategies alone have no impact on disease transmission. Other controls that directly influence disease transmission and/or mortality are required. Next, we analyze the socially optimal management of infectious wildlife. The model is applied to the problem of bovine tuberculosis among Michigan white-tailed deer, with non-selective harvests and supplemental feeding being the control variables. Using a two-state linear control model, we find a two-dimensional singular path is optimal (as opposed to a more conventional bang-bang solution) as part of a cycle that results in the disease remaining endemic in the wildlife. This result follows from non-selective harvesting and intermittent wildlife productivity gains from supplemental feeding.
Resumo:
The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training
Resumo:
In this work, we carried out a study of the 2208 model servo module Datapool, aiming to make the recognition module and the material that accompanies it, and develop the experiences suggested in their study tours, in order to prove and understand its operation. From this study, three experiments were developed, aimed to familiarizing students with the module, calibrate it, and to control servo motor's speed and position, experiences which can become part of the laboratory of Linear Control, making the learning of concepts just richer, because visually, students can escape the theoretical field and see in practice complex concepts being employed
Resumo:
Quality control of medical radiological systems is of fundamental importance, and requires efficient methods for accurately determine the X-ray source spectrum. Straightforward measurements of X-ray spectra in standard operating require the limitation of the high photon flux, and therefore the measure has to be performed in a laboratory. However, the optimal quality control requires frequent in situ measurements which can be only performed using a portable system. To reduce the photon flux by 3 magnitude orders an indirect technique based on the scattering of the X-ray source beam by a solid target is used. The measured spectrum presents a lack of information because of transport and detection effects. The solution is then unfolded by solving the matrix equation that represents formally the scattering problem. However, the algebraic system is ill-conditioned and, therefore, it is not possible to obtain a satisfactory solution. Special strategies are necessary to circumvent the ill-conditioning. Numerous attempts have been done to solve this problem by using purely mathematical methods. In this thesis, a more physical point of view is adopted. The proposed method uses both the forward and the adjoint solutions of the Boltzmann transport equation to generate a better conditioned linear algebraic system. The procedure has been tested first on numerical experiments, giving excellent results. Then, the method has been verified with experimental measurements performed at the Operational Unit of Health Physics of the University of Bologna. The reconstructed spectra have been compared with the ones obtained with straightforward measurements, showing very good agreement.
Resumo:
OBJECTIVES: To examine differences in risk factor (RF) management between peripheral artery disease (PAD) and coronary artery (CAD) or cerebrovascular disease (CVD), as well as the impact of RF control on major 1-year cardiovascular (CV) event rates. METHODS: The REACH Registry recruited >68000 outpatients aged >/=45 years with established atherothrombotic disease or >/=3 RFs for atherothrombosis. The predictors of RF control that were evaluated included: (1) patient demographics, (2) mode of PAD diagnosis, and (3) concomitant CAD and/or CVD. RESULTS: RF control was less frequent in patients with PAD (n=8322), compared with those with CAD or CVD (but no PAD, n=47492) [blood pressure; glycemia; total cholesterol; smoking cessation (each P<0.001)]. Factors independently associated with optimal RF control in patients with PAD were male gender (OR=1.9); residence in North America (OR=3.5), Japan (OR=2.5) or Latin America (OR=1.5); previous coronary revascularization (OR=1.3); and statin use (OR=1.4); whereas prior leg amputation was a negative predictor (OR=0.7) (P<0.001). Optimal RF control was associated with fewer 1-year CV ischemic symptoms or events. CONCLUSIONS: Patients with PAD do not achieve RF control as frequently as individuals with CAD or CVD. Improved RF control is associated with a positive impact on 1-year CV event rates.
Resumo:
As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.
Resumo:
The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the trajectory following task. The main advantages of the proposed control structure is that well known linear control theory can be applied in calculating the PID controllers to full control requirements, while at the same time it is exible to be applied in non-linear changing conditions of the path following task. For this purpose the Frenet frame kinematic model of the robot is linearised at a varying working point that is calculated as a function of the actual velocity, the path curvature and kinematic parameters of the robot, yielding a transfer function that varies during the trajectory. The proposed controller is formed by a combination of an adaptive PID and a feed-forward controller, which varies accordingly with the working conditions and compensates the non-linearity of the system. The good features and exibility of the proposed control structure have been demonstrated through realistic simulations that include both kinematics and dynamics of the car-like robot.
Resumo:
This thesis investigates the design of optimal tax systems in dynamic environments. The first essay characterizes the optimal tax system where wages depend on stochastic shocks and work experience. In addition to redistributive and efficiency motives, the taxation of inexperienced workers depends on a second-best requirement that encourages work experience, a social insurance motive and incentive effects. Calibrations using U.S. data yield higher expected optimal marginal income tax rates for experienced workers for most of the inexperienced workers. They confirm that the average marginal income tax rate increases (decreases) with age when shocks and work experience are substitutes (complements). Finally, more variability in experienced workers' earnings prospects leads to increasing tax rates since income taxation acts as a social insurance mechanism. In the second essay, the properties of an optimal tax system are investigated in a dynamic private information economy where labor market frictions create unemployment that destroys workers' human capital. A two-skill type model is considered where wages and employment are endogenous. I find that the optimal tax system distorts the first-period wages of all workers below their efficient levels which leads to more employment. The standard no-distortion-at-the-top result no longer holds due to the combination of private information and the destruction of human capital. I show this result analytically under the Maximin social welfare function and confirm it numerically for a general social welfare function. I also investigate the use of a training program and job creation subsidies. The final essay analyzes the optimal linear tax system when there is a population of individuals whose perceptions of savings are linked to their disposable income and their family background through family cultural transmission. Aside from the standard equity/efficiency trade-off, taxes account for the endogeneity of perceptions through two channels. First, taxing labor decreases income, which decreases the perception of savings through time. Second, taxation on savings corrects for the misperceptions of workers and thus savings and labor decisions. Numerical simulations confirm that behavioral issues push labor income taxes upward to finance saving subsidies. Government transfers to individuals are also decreased to finance those same subsidies.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.