923 resultados para Oocyte morphology
Resumo:
The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.
Resumo:
Salmonella typhimurium mutants affecting the plaque morphology of P22 and other phages have been isolated. Using one such bacterial mutant phage mutants making turbid plaques have been isolated.
Resumo:
The aim of this thesis was to unravel the functional-structural characteristics of root systems of Betula pendula Roth., Picea abies (L.) Karst., and Pinus sylvestris L. in mixed boreal forest stands differing in their developmental stage and site fertility. The root systems of these species had similar structural regularities: horizontally-oriented shallow roots defined the horizontal area of influence, and within this area, each species placed fine roots in the uppermost soil layers, while sinker roots defined the maximum rooting depth. Large radial spread and high ramification of coarse roots, and the high specific root length (SRL) and root length density (RLD) of fine roots indicated the high belowground competitiveness and root plasticity of B. pendula. Smaller radial root spread and sparser branching of coarse roots, and low SRL and RLD of fine roots of the conifers could indicate their more conservative resource use and high association with and dependence on ectomycorrhiza-forming fungi. The vertical fine root distributions of the species were mostly overlapping, implying the possibility for intense belowground competition for nutrients. In each species, conduits tapered and their frequency increased from distal roots to the stem, from the stem to the branches, and to leaf petioles in B. pendula. Conduit tapering was organ-specific in each species violating the assumptions of the general vascular scaling model (WBE). This reflects the hierarchical organization of a tree and differences between organs in the relative importance of transport, safety, and mechanical demands. The applied root model was capable of depicting the mass, length and spread of coarse roots of B. pendula and P. abies, and to the lesser extent in P. sylvestris. The roots did not follow self-similar fractal branching, because the parameter values varied within the root systems. Model parameters indicate differences in rooting behavior, and therefore different ecophysiological adaptations between species.
Resumo:
The formation of anomalous indentations, with two opposite faces describing a pin-cushion effect and the other two faces normal, in long elongated grains of an extruded Mg-2Al-1Zn alloy is reported. Subsurface microstructural observations combined with Schmid factor calculations suggest that extension twinning accompanied by basal slip are the reasons for these. Johnson's expanding cavity model is invoked for further substantiation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We study the vaporization and precipitation dynamics of a nanosilica encapsulated water droplet by levitating it acoustically and heating it with a CO2 laser. For all concentrations, we observe three phases: solvent evaporation, surface agglomeration, and precipitation leading to bowl or ring shaped structures. At higher concentrations, ring reorientation and rotation are seen consistently. The surface temperature from an infrared camera is seen to be dependent on the final geometrical shape of the droplet and its rotation induced by the acoustic field of the levitator. With nonuniform particle distribution, these structures can experience rupture which modifies the droplet rotational speed. (C) 2010 American Institute of Physics. doi:10.1063/1.3493178]
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
The role of self accomodation of the different mertensite variants controlling the morphologies of the Zr---2.5wt%Nb alloy martensite has been examined. Three distinct types of grouping of martensite variants have been found to be predominantly present. Crystallographic descriptions of these groups have been provided and the degrees of self accomodation for these have been estimated and compared with those corresponding to other possible variant groupings around the symmetry axes of the parent phase. The frequently observed 3-variant group, which shows an “indentation mark” morphology when viewed along left angle bracket111right-pointing angle bracketβ directions in the transmission electron microscope, has been seen to have the highest degree of self accomodation amongst the cases considered. Based on the observations made, a growth sequence leading to the formation of the final martensitic structure has been proposed.
Resumo:
Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.
Resumo:
We have developed a theory for an electrochemical way of measuring the statistical properties of a nonfractally rough electrode. We obtained the expression for the current transient on a rough electrode which shows three times regions: short and long time limits and the transition region between them. The expressions for these time ranges are exploited to extract morphological information about the surface roughness. In the short and long time regimes, we extract information regarding various morphological features like the roughness factor, average roughness, curvature, correlation length, dimensionality of roughness, and polynomial approximation for the correlation function. The formulas for the surface structure factors (the measure of surface roughness) of rough surfaces in terms of measured reversible and diffusion-limited current transients are also obtained. Finally, we explore the feasibility of making such measurements.
Resumo:
The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Using the multifractal formalism, we discuss the results obtained to characterized the morphology of polymer alloys and granular discontinuous metallic thin films. In the first case we have found a correlation between the multifractality and the mechanical properties of the alloys. In the second case, we have found that it is possible to measure the differences between the morphology of thin films induced by a growth process on a subtrate and that of percolation clusters of the classical theory of percolation.
Resumo:
This paper presents a model study to understand the effect of surfactants on the physicochemical properties of human hair. FT-IR ATR spectroscopy has been employed to understand the chemical changes induced by sodium dodecyl sulfate (SDS) on human scalp hair. In particular, the SDS induced changes in the secondary structure of protein present in the outer protective layer of hair, i.e. cuticle, have been investigated. Conformational changes in the secondary structure of protein were studied by curve fitting of the amide I band after every phase of SDS treatment. It has been found that SDS brings rearrangements in the protein backbone conformations by transforming beta-sheet structure to random coil and beta-turn. Additionally, AFM and SEM studies were carried out to understand the morphological changes induced on the hair surface. SEM and AFM images demonstrated the rupture and partial erosion of cuticle sublayers.
Resumo:
KTP crystals have been grown below and above the ferroelectric transition temperature by flux method employing both spontaneous and top-seeded solution growth techniques. A slight morphological difference has been observed in these crystals when grown below and above the T-c. Ferroelectric domains are studied in these crystals by selective domain etching. It is seen that the ferroelectric domains in crystals grown spontaneously below T, show a complicated structure. A systematic investigation of the factors influencing domain structure has been carried out. Stress to some extent has been shown to affect the domain structure. Finally, a convenient way of converting the multidomain crystals into monodomain ones is described.