985 resultados para One-pot Conversion
Resumo:
Nel presente lavoro di tesi si è analizzata l’ossidazione catalitica per la valorizzazione di arabinosio a prodotti chimici. Per questa complessa serie di trasformazioni, si è studiata la reattività di nanoparticelle di oro supportate su niobio fosfato. Quindi, si è ipotizzato che la doppia funzionalità del catalizzatore così sintetizzato potesse favorire i due step alla base dell’intero processo: l’acidità del NbOPO4 è fondamentale per la prima disidratazione del monosaccaride a furfurale, mentre le condizioni ossidanti garantite da un’atmosfera di ossigeno e dalle nanoparticelle di oro hanno il ruolo di permettere una successiva ossidazione. Data l’instabilità del furfurale si propone di condurre una reazione one-pot (150°C, 10 bar di O2), che porti all’ossidazione in situ del furfurale, a sua volta prodotto dalla disidratazione dello zucchero. Purtroppo la bassa selettività del processo, nonostante gli accorgimenti adottati, evidenzia le considerevoli perdite di monosaccaride in reazioni indesiderate. Ulteriori studi saranno necessari al fine di migliorare la selettività del processo, analizzando il meccanismo di reazione ed intervenendo sulle condizioni di lavoro.
Resumo:
The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV (Spain). This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). These materials have been little explored as catalysts, although they have a great potential as multifunctional materials. Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by isomorphous substitution of tungsten atoms with other transition metals such as vanadium, niobium and molybdenum. In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by hydrothermal synthesis; these mixed-oxide were fully characterize by a number of physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical route to solve the important issue related to the co-production of glycerin along the biodiesel production chain. Acrylic acid yields as high as 51% were obtained and important structure-reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid and redox properties as well as the in-framework presence of vanadium are fundamental to achieve noteworthy yields into the acid monomer. The overall results reported herein might represent an important contribution for future applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for their physicochemical characterization.
Resumo:
Il lavoro di tesi si inserisce in un contesto di ricerca molto attuale, che studia la preparazione di nuovi materiali polimerici ad elevate prestazioni e derivabili da fonti rinnovabili. Partendo dal resorcinolo, una molecola che può essere ottenuta da biomassa, e dall’etilene carbonato sono state ottimizzate la sintesi e la purificazione di un diolo, l’1,3-bis(2-idrossietossi)benzene (HER), senza l’impiego di solventi e con l’utilizzo di modeste quantità di catalizzatore. L’HER è conosciuto in letteratura ma è poco studiato e non viene attualmente impiegato come monomero. In questo lavoro L’HER è stato polimerizzato in massa con una serie di diacidi (alcuni derivati da biomassa, altri provenienti da fonti fossili) sia di natura alifatica (lineari e ciclici) che di natura aromatica. Sono state analizzate la struttura chimica e le proprietà termiche dei nuovi poliesteri, in modo da definire correlazioni fra struttura e prestazioni finali. E’ stata infine messa a punto una procedura one-pot per la preparazione dei suddetti poliesteri; essa prevede la sintesi diretta dei polimeri senza lo stadio intermedio di purificazione dell’HER.
Resumo:
The aim of this thesis was to design, synthesize and characterize dye-doped silica nanoparticles (DDSNPs) to be used as chemosensors or labels in bioanalytical applications. DDSNPs represent one of the most versatile and useful components in nanomedicine displaying important features such as high colloid stability in water, low toxicity, one-pot inexpensive synthesis and tunable fluorescence emission. Starting from the one-pot and highly reproducible synthesis of “silica-core/PEG shell” DDSNPs based on the use of micelles of Pluronic F127, in which take place both hydrolysis and condensation of the silica precursor and of the dyes functionalized with a triethoxysilane group, we developed DDSNPs suitable for optical and optoacustic imaging, drug loading and chemical sensing obtaining very interesting results for the further development of nanomedicine.
Resumo:
The research work has dealt with the study of new catalytic processes for the synthesis of fine chemicals belonging to the class of phenolics, namely 2-phenoxyethanol and hydroxytyrosol. The two synthetic procedures investigated have the advantages of being much closer to the Green Chemistry principles than those currently used industrially. In both cases, the challenge was that of finding catalysts and methods which led to the production of less waste, and used less hazardous chemicals, safer solvents, and reusable heterogeneous catalysts. In the case of 2-phenoxyethanol, the process investigated involves the use of ethylene carbonate (EC) as the reactant for phenol O-hydroxyethylation, in place of ethylene oxide. Besides being a safer reactant, the major advantage of using EC in the new synthesis is the better selectivity to the desired product achieved. Moreover, the solid catalyst based on Na-mordenite was fully recyclable. The reaction mechanism and the effect of the Si/Al ratio in the mordenite were investigated. In the case of hydroxytyrosol, which is one of the most powerful natural antioxidants, a new synthetic procedure was investigated; in fact, the method currently employed, the hydrolysis of oleuropein, an ester extracted from the waste water processing of the olive, makes use of large amounts of organic solvents (hexane, ethyl acetate), and involves several expensive steps of purification. The synthesis procedure set up involves first the reaction between catechol and 2,2-dimethoxyacetaldehyde, followed by the one-pot reduction of the intermediate to give the desired product. Both steps were optimized, in terms of catalyst used, and of reaction conditions, that allowed to reach ca 70% yield in each step. The reaction mechanism was investigated and elucidated. During a 3-month period spent at the University of Valencia (with Prof. A. Corma’s group), a process for the production of diesel additives (2,5-bis(propoxymethyl)furan) from fructose has been investigated.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
This dissertation describes the synthesis of surface attached hydrogel biomaterials, characterization of their properties, evaluation of structuring concepts and the investigation of these materials in the isolation of DNA from human whole blood. Photosensitive hydrogel precursor materials on the basis of hydroxyethylmethacrylate (HEMA) were synthesized by free radical polymerization. In order to obtain surface bound hydrogel films, the precursors were deposited on a suitable substrate and subsequently irradatiated with UV - light to accomplish the formation of crosslinks in the film and create surface attachment. The composition of the polymerization precursor materials was determined by comprehensive NMR and GPC studies, revealing the copolymerizationrnbehaviour of the used monomers - HEMA derivatives and the photocrosslinkerrnMABP - and their respective distribution in the hydrogel precursors. The degree of crosslinking of the hydrogels was characterized with UV/vis spectroscopy. Stress-strain measurements were conducted in order to investigate the mechanical properties of the biomaterials. Moreover, the swelling process and biomolecule adsorption properties of the hydrogels were investigated with SPR/OW spectroscopy. For this, the deposition and binding of the hydrogels on gold or SiO2 surfaces was facilitated with photocrosslinkable adhesion promotors. The produced hydrogels were mechanically rigid and stablernunder the conditions of PCR and blood lysis. Furthermore, strategies towards the increase of hydrogel surface structure and porosity with porosigens, 2D laser interference lithography and photocleavable blockcopolymers were investigated. At last, a combinatorial strategy was used for the determination of the usefulness of hydrogels for the isolation from DNA from blood. A series of functionalized hydrogel precursors were synthesized, transferred to the surface inside a PCR tube and subsequently screened in regard to DNA adsorption properties with Taqman quantitative PCR. This approach yielded a promising candidate for a functional PCR tube coating that would allow the entire DNA isolation procedure being carried out in a single reaction container.rnThereforce, the practical application of such macromolecular architectures can be envisioned to improve industrial DNA diagnostic processes.
Resumo:
Indolizines and pyrroles are considered as “privileged” structures since their skeletons were found in many biologically active natural products and they possess a wide range of pharmaceutical properties. Syntheses of these small drug-like molecules are very important in medicinal chemistry. However, most existent methodologies are usually limited to specific substitution patterns or require impractical starting materials or expensive catalysts. Therefore, developing new methodologies for the synthesis of indolizines and pyrroles from commercially available or readily accessible sources is highly desirable.rnIn this PhD thesis, several methods has been described for the synthesis of indolizines and pyrroles. In the first part, indolizines carrying substituents in positions 1-3 were synthesized via a formal [3+2]-cycloaddition of pyridinium ylides and nitroalkenes. Pyridinium salts were prepared by N-alkylation of pyridines with cyanohydrin triflates which could be prepared from corresponding aldehydes via a Strecker reaction followed by O-triflylation. Nitroalkenes were simply prepared from the corresponding aldehydes and nitroalkanes in a nitroaldol condensation. Overall, this modular approach allows to construct the indolizine framework with various substitution patterns starting from a pyridine, two different aldehydes and a nitroalkane. In contrast to reported methods, the produced indolizines do not have to contain an electron-withdrawing group.rnIt has also been found that nitrile-stabilized 2-alkylpyridinium ylides cyclize to unstable 2-aminoindolizines via an intramolecular 5-exo-dig cyclization. Using an in situ acetylation of the amino group, N-protected 2-aminoindolizines could be synthesized. As a less common substitution pattern, indolizines carrying substituents in positions 5–8 were synthesized from enones and 2-(1H-pyrrol-1-yl)nitriles obtained from α-aminonitriles using a modified Paal-Knorr pyrrole synthesis. The decoration of the pyridine unit in the indolizine skeleton has been achieved by a one-pot conjugate addition/cycloaromatization sequence.rnIn the second part of the thesis, the diversity-oriented synthesis of pyrroles from 3,5-diaryl substituted 2H-pyrrole-2-carbonitriles (cyanopyrrolines) obtained in a cyclocondensation of enones with aminoacetonitrile hydrochloride is being discussed. 2,4-Di-, 2,3,5-trisubstituted pyrroles, pyrrole-2-carbonitriles and 2,2’-bipyrroles were synthesized in a one- or two-step protocol. While the microwave-assisted thermal elimination of HCN from cyanopyrrolines gave 2,4-disubstituted pyrroles, DDQ-oxidation of the same intermediates furnished pyrrole-2-carbonitriles. Furthermore, 2,3,5-trisubstituted pyrroles were obtained via a C-2-alkylation of the deprotonated cyanopyrrolines followed by the elimination of HCN. Finally, it has also been found that tetraaryl substituted 2,2’-bipyrroles could be synthesized by the oxidative dimerization of cyanopyrrolines using copper (II) acetate at 100 °C.rn
Resumo:
Questo lavoro di tesi si inserisce in un contesto di ricerca molto attuale, il quale, studia nuove procedure sintetiche sostenibili per la preparazione di strutture poliuretaniche. Partendo dall’etilene carbonato e dall’esametilendiammina, due molecole che possono essere ricavate da fonti rinnovabili, sono state ottimizzate la sintesi e la purificazione di un carbammato: bis(2-idrossietil)-esan-1,6-diildicarbammato (BHEDC), senza l’impiego di solventi ed in condizioni blande. Il BHEDC è conosciuto in letteratura, ma è poco studiato e non viene attualmente utilizzato come monomero. In questo lavoro il bis(2-idrossietil)-esan-1,6-diildicarbammato è stato polimerizzato in massa con diverse percentuali di bis(2-idrossietil)-tereftalato (BHET), il quale non è ricavabile da fonti naturali ma è ottenibile dal riciclo chimico del Poli-Etilene Tereftalato (PET). Sono state successivamente analizzate la struttura chimica e le proprietà termiche nonché spettroscopiche dei nuovi composti poliuretanici, così da poterne definire le correlazioni tra la struttura e le prestazioni finali. Infine, è stata messa a punto una procedura di tipo one-pot per la preparazione dei poliuretani sopra citati; questa prevede la sintesi diretta dei polimeri senza la necessità dello stadio di purificazione del bis(2-idrossietil)-esan-1,6-diildicarbammato.
Resumo:
Il presente lavoro ha riguardato lo studio della trasformazione one-pot in fase gas di 1,2-propandiolo ad acido propionico, impiegando il pirofosfato di vanadile (VPP), (VO)2P2O7, e due differenti sistemi a base di bronzi di tungsteno con struttura esagonale (HTB), gli ossidi misti W1V0,3 e W1Mo0,5V0,1. Il processo richiede un catalizzatore con due differenti funzionalità: una acida, principalmente di tipo Brønsted, fornita nel VPP dai gruppi P-OH presenti sulla sua superficie, e negli HTB dai gruppi W-OH sulla loro superficie e dagli ioni H+ nei canali esagonali dell’ossido; e una ossidante, fornita nel VPP dal V, e negli HTB da V e Mo incorporati nella struttura esagonale. I risultati delle prove di reattività hanno consentito di dedurre gli aspetti principali dello schema della reazione one-pot di disidratazione-ossidazione dell’1,2-propandiolo ad acido propionico. I catalizzatori provati non possiedono la combinazione ottimale di proprietà acide e redox necessarie per ottenere elevate rese in acido propionico. Le scarse proprietà ossidanti portano a un accumulo di propionaldeide, che reagisce con l’1,2-propandiolo a dare diossolani, e inoltre dà luogo alla formazione di altri sottoprodotti. È perciò necessario incrementare le proprietà ossidanti del catalizzatore, in modo da accelerare la trasformazione della propionaldeide ad acido propionico, ed evitare quindi che le proprietà acide del catalizzatore, necessarie per compiere il primo stadio di disidratazione di 1,2-propandiolo, siano causa di reazioni parassite di trasformazione dell’aldeide stessa.
Resumo:
A one-pot procedure for the efficient hydroazidation of alkenes involving hydroboration with catecholborane followed by reaction with benzenesulfonyl azide in the presence of a radical initiator is described. The regioselectivity is controlled by the hydroboration step and corresponds in most cases to an anti-Markovnikov regioselectivity. This procedure is applicable to a wide range of alkenes and gives excellent results with 1,2-disubstituted and trisubstituted alkenes.
Resumo:
A mild and convenient synthesis of substituted α-methylene--valerolactones was achieved by SN2 nucleophilic substitution of the acetates of the Baylis-Hillman adducts with acetyl acetone followed by one-pot saponification of the ester, reduction of the keto group and subsequent intramolecular ring closure in aqueous medium.
Resumo:
A generalized, odorless, one-pot methodology has been developed for the preparation of 1,2-trans-thioglycosides and thio-Michael addition products of carbohydrate derivatives through triphenyl phosphine mediated cleavage of disulfides and reaction of the thiolate formed in situ with glycosyl bromides and glycosyl conjugated alkenes.
Resumo:
A convenient methodology has been developed for the synthesis of glycosylenaminoesters directly from glycosyl azides under hydrogenetion condition. Yields were moderate to good in all cases.
Resumo:
The applications of the primary allyl amines afforded by the acetyl derivative of Baylis-Hillman adducts of acrylate for the synthesis of heterocycles using robust reactions are described. In the first strategy a one-pot synthesis of 5-benzyl-4(3H)-pyrimidinones have been achieved via N-formylation of the amines in the presence of neat formamide followed by ammonium formate-mediated cyclization. These pyrimidinones have been demonstrated to be excellent precursor to the 4-pyridinamine derivatives. In the second strategy the synthesis of 2-benzylidene-2,3-dihydro-pyrrolizin-1-ones have been accomplished via treatment of allyl amine with dimethoxyfuran followed by saponification and PPA-mediated intramolecular cyclization.