921 resultados para Objective Image Quality
Resumo:
Introdução – A pesquisa de informação realizada pelos estudantes de ensino superior em recursos eletrónicos não corresponde necessariamente ao domínio de competências de pesquisa, análise, avaliação, seleção e bom uso da informação recuperada. O conceito de literacia da informação ganha pertinência e destaque, na medida em que abarca competências que permitem reconhecer quando é necessária a informação e de atuar de forma eficiente e efetiva na sua obtenção e utilização. Objetivo – A meta da Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL) foi a formação em competências de literacia da informação, fora da ESTeSL, de estudantes, professores e investigadores. Métodos – A formação foi integrada em projetos nacionais e internacionais, dependendo dos públicos-alvo, das temáticas, dos conteúdos, da carga horária e da solicitação da instituição parceira. A Fundação Calouste Gulbenkian foi o promotor financeiro privilegiado. Resultados – Decorreram várias intervenções em território nacional e internacional. Em 2010, em Angola, no Instituto Médio de Saúde do Bengo, formação de 10 bibliotecários sobre a construção e a gestão de uma biblioteca de saúde e introdução à literacia da informação (35h). Em 2014, decorrente do ERASMUS Intensive Programme, o OPTIMAX (Radiation Dose and Image Quality Optimisation in Medical Imaging) para 40 professores e estudantes de radiologia (oriundos de Portugal, Reino Unido, Noruega, Países Baixos e Suíça) sobre metodologia e pesquisa de informação na MEDLINE e na Web of Science e sobre o Mendeley, enquanto gestor de referências (4h). Os trabalhos finais deste curso foram publicados em formato de ebook (http://usir.salford.ac.uk/34439/1/Final%20complete%20version.pdf), cuja revisão editorial foi da responsabilidade dos bibliotecários. Ao longo de 2014, na Escola Superior de Educação, Escola Superior de Dança, Instituto Politécnico de Setúbal e Faculdade de Medicina de Lisboa e, ao longo de 2015, na Universidade Aberta, Escola Superior de Comunicação Social, Instituto Egas Moniz, Faculdade de Letras de Lisboa e Centro de Linguística da Universidade de Lisboa foram desenhados conteúdos sobre o uso do ZOTERO e do Mendeley para a gestão de referências bibliográficas e sobre uma nova forma de fazer investigação. Cada uma destas sessões (2,5h) envolveu cerca de 25 estudantes finalistas, mestrandos e professores. Em 2015, em Moçambique, no Instituto Superior de Ciências da Saúde, decorreu a formação de 5 bibliotecários e 46 estudantes e professores (70h). Os conteúdos ministrados foram: 1) gestão e organização de uma biblioteca de saúde (para bibliotecários); 2) literacia da informação: pesquisa de informação na MEDLINE, SciELO e RCAAP, gestores de referências e como evitar o plágio (para bibliotecários e estudantes finalistas de radiologia). A carga horária destinada aos estudantes incluiu a tutoria das monografias de licenciatura, em colaboração com mais duas professoras do projeto. Para 2016 está agendada formação noutras instituições de ensino superior nacionais. Perspetiva-se, ainda, formação similar em Timor-Leste, cujos conteúdos, datas e carga horária estão por agendar. Conclusões – Destas iniciativas beneficia a instituição (pela visibilidade), os bibliotecários (pelo evidenciar de competências) e os estudantes, professores e investigadores (pelo ganho de novas competências e pela autonomia adquirida). O projeto de literacia da informação da ESTeSL tem contribuído de forma efetiva para a construção e para a produção de conhecimento no meio académico, nacional e internacional, sendo a biblioteca o parceiro privilegiado nesta cultura de colaboração.
Resumo:
Measuring the quality of a b-learning environment is critical to determine the success of a b-learning course. Several initiatives have been recently conducted on benchmarking and quality in e-learning. Despite these efforts in defining and examining quality issues concerning online courses, a defining instrument to evaluate quality is one of the key challenges for blended learning, since it incorporates both traditional and online instruction methods. For this paper, six frameworks for quality assessment of technological enhanced learning were examined and compared regarding similarities and differences. These frameworks aim at the same global objective: the quality of e-learning environment/products. They present different perspectives but also many common issues. Some of them are more specific and related to the course and other are more global and related to institutional aspects. In this work we collected and arrange all the quality criteria identified in order to get a more complete framework and determine if it fits our b-learning environment. We also included elements related to our own b-learning research and experience, acquired during more than 10 years of experience. As a result we have create a new quality reference with a set of dimensions and criteria that should be taken into account when you are analyzing, designing, developing, implementing and evaluating a b-learning environment. Besides these perspectives on what to do when you are developing a b-learning environment we have also included pedagogical issues in order to give directions on how to do it to reach the success of the learning. The information, concepts and procedures here presented give support to teachers and instructors, which intend to validate the quality of their blended learning courses.
Resumo:
Computação gráfica um campo que tem vindo a crescer bastante nos últimos anos, desde áreas como cinematográficas, dos videojogos, da animação, o avanço tem sido tão grande que a semelhança com a realidade é cada vez maior. Praticamente hoje em dia todos os filmes têm efeitos gerados através de computação gráfica, até simples anúncios de televisão para não falar do realismo dos videojogos de hoje. Este estudo tem como objectivo mostrar duas alternativas no mundo da computação gráfica, como tal, vão ser usados dois programas, Blender e Unreal Engine. O cenário em questão será todo modelado de raiz e será o mesmo nos dois programas. Serão feitos vários renders ao cenário, em ambos os programas usando diferentes materiais, diferentes tipos de iluminação, em tempo real e não de forma a mostrar as várias alternativas possíveis.
Resumo:
RATIONALE AND OBJECTIVES: Dose reduction may compromise patients because of a decrease of image quality. Therefore, the amount of dose savings in new dose-reduction techniques needs to be thoroughly assessed. To avoid repeated studies in one patient, chest computed tomography (CT) scans with different dose levels were performed in corpses comparing model-based iterative reconstruction (MBIR) as a tool to enhance image quality with current standard full-dose imaging. MATERIALS AND METHODS: Twenty-five human cadavers were scanned (CT HD750) after contrast medium injection at different, decreasing dose levels D0-D5 and respectively reconstructed with MBIR. The data at full-dose level, D0, have been additionally reconstructed with standard adaptive statistical iterative reconstruction (ASIR), which represented the full-dose baseline reference (FDBR). Two radiologists independently compared image quality (IQ) in 3-mm multiplanar reformations for soft-tissue evaluation of D0-D5 to FDBR (-2, diagnostically inferior; -1, inferior; 0, equal; +1, superior; and +2, diagnostically superior). For statistical analysis, the intraclass correlation coefficient (ICC) and the Wilcoxon test were used. RESULTS: Mean CT dose index values (mGy) were as follows: D0/FDBR = 10.1 ± 1.7, D1 = 6.2 ± 2.8, D2 = 5.7 ± 2.7, D3 = 3.5 ± 1.9, D4 = 1.8 ± 1.0, and D5 = 0.9 ± 0.5. Mean IQ ratings were as follows: D0 = +1.8 ± 0.2, D1 = +1.5 ± 0.3, D2 = +1.1 ± 0.3, D3 = +0.7 ± 0.5, D4 = +0.1 ± 0.5, and D5 = -1.2 ± 0.5. All values demonstrated a significant difference to baseline (P < .05), except mean IQ for D4 (P = .61). ICC was 0.91. CONCLUSIONS: Compared to ASIR, MBIR allowed for a significant dose reduction of 82% without impairment of IQ. This resulted in a calculated mean effective dose below 1 mSv.
Resumo:
Purpose: To evaluate the diagnostic value and image quality of CT with filtered back projection (FBP) compared with adaptive statistical iterative reconstructed images (ASIR) in body stuffers with ingested cocaine-filled packets.Methods and Materials: Twenty-nine body stuffers (mean age 31.9 years, 3 women) suspected for ingestion of cocaine-filled packets underwent routine-dose 64-row multidetector CT with FBP (120kV, pitch 1.375, 100-300 mA and automatic tube current modulation (auto mA), rotation time 0.7sec, collimation 2.5mm), secondarily reconstructed with 30 % and 60 % ASIR. In 13 (44.83%) out of the body stuffers cocaine-filled packets were detected, confirmed by exact analysis of the faecal content including verification of the number (range 1-25). Three radiologists independently and blindly evaluated anonymous CT examinations (29 FBP-CT and 68 ASIR-CT) for the presence and number of cocaine-filled packets indicating observers' confidence, and graded them for diagnostic quality, image noise, and sharpness. Sensitivity, specificity, area under the receiver operating curve (ROC) Az and interobserver agreement between the 3 radiologists for FBP-CT and ASIR-CT were calculated.Results: The increase of the percentage of ASIR significantly diminished the objective image noise (p<0.001). Overall sensitivity and specificity for the detection of the cocaine-filled packets were 87.72% and 76.15%, respectively. The difference of ROC area Az between the different reconstruction techniques was significant (p= 0.0101), that is 0.938 for FBP-CT, 0.916 for 30 % ASIR-CT, and 0.894 for 60 % ASIR-CT.Conclusion: Despite the evident image noise reduction obtained by ASIR, the diagnostic value for detecting cocaine-filled packets decreases, depending on the applied ASIR percentage.
Resumo:
Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available.
Resumo:
PURPOSE: Cardiovascular magnetic resonance (CMR) has become a robust and important diagnostic imaging modality in cardiovascular medicine. However,insufficient image quality may compromise its diagnostic accuracy. No standardized criteria are available to assess the quality of CMR studies. We aimed todescribe and validate standardized criteria to evaluate the quality of CMR studies including: a) cine steady-state free precession, b) delayed gadoliniumenhancement, and c) adenosine stress first-pass perfusion. These criteria will serve for the assessment of the image quality in the setting of the Euro-CMR registry.METHOD AND MATERIALS: First, a total of 45 quality criteria were defined (35 qualitative criteria with a score from 0-3, and 10 quantitative criteria). Thequalitative score ranged from 0 to 105. The lower the qualitative score, the better the quality. The quantitative criteria were based on the absolute signal intensity (delayed enhancement) and on the signal increase (perfusion) of the anterior/posterior left ventricular wall after gadolinium injection. These criteria were then applied in 30 patients scanned with a 1.5T system and in 15 patients scanned with a 3.0T system. The examinations were jointly interpreted by 3 CMR experts and 1 study nurse. In these 45 patients the correlation between the results of the quality assessment obtained by the different readers was calculated.RESULTS: On the 1.5T machine, the mean quality score was 3.5. The mean difference between each pair of observers was 0.2 (5.7%) with a mean standarddeviation of 1.4. On the 3.0T machine, the mean quality score was 4.4. The mean difference between each pair of onservers was 0.3 (6.4%) with a meanstandard deviation of 1.6. The quantitative quality assessments between observers were well correlated for the 1.5T machine: R was between 0.78 and 0.99 (pCONCLUSION: The described criteria for the assessment of CMR image quality are robust and have a low inter-observer variability, especially on 1.5T systems.CLINICAL RELEVANCE/APPLICATION: These criteria will allow the standardization of CMR examinations. They will help to improve the overall quality ofexaminations and the comparison between clinical studies.
Resumo:
OBJECTIVE: Surface magnetic resonance imaging (MRI) for aortic plaque assessment is limited by the trade-off between penetration depth and signal-to-noise ratio (SNR). For imaging the deep seated aorta, a combined surface and transesophageal MRI (TEMRI) technique was developed 1) to determine the individual contribution of TEMRI and surface coils to the combined signal, 2) to measure the signal improvement of a combined surface and TEMRI over surface MRI, and 3) to assess for reproducibility of plaque dimension analysis. METHODS AND RESULTS: In 24 patients six black blood proton-density/T2-weighted fast-spin echo images were obtained using three surface and one TEMRI coil for SNR measurements. Reproducibility of plaque dimensions (combined surface and TEMRI) was measured in 10 patients. TEMRI contributed 68% of the signal in the aortic arch and descending aorta, whereas the overall signal gain using the combined technique was up to 225%. Plaque volume measurements had an intraclass correlation coefficient of as high as 0.97. CONCLUSION: Plaque volume measurements for the quantification of aortic plaque size are highly reproducible for combined surface and TEMRI. The TEMRI coil contributes considerably to the aortic MR signal. The combined surface and TEMRI approach improves aortic signal significantly as compared to surface coils alone. CONDENSED ABSTRACT: Conventional MRI aortic plaque visualization is limited by the penetration depth of MRI surface coils and may lead to suboptimal image quality with insufficient reproducibility. By combining a transesophageal MRI (TEMRI) with surface MRI coils we enhanced local and overall image SNR for improved image quality and reproducibility.
Resumo:
The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.
Resumo:
OBJECTIVE. The purpose of this study was to improve the blood-pool signal-to-noise ratio (SNR) and blood-myocardium contrast-to-noise ratio (CNR) of slow-infusion 3-T whole-heart coronary MR angiography (MRA).SUBJECTS AND METHODS. In 2D sensitivity encoding (SENSE), the number of acquired k-space lines is reduced, allowing less radiofrequency excitation per cardiac cycle and a longer TR. The former can be exploited for signal enhancement with a higher radiofrequency excitation angle, and the latter leads to noise reduction due to lower data-sampling bandwidth. Both effects contribute to SNR gain in coronary MRA when spatial and temporal resolution and acquisition time remain identical. Numeric simulation was performed to select the optimal 2D SENSE pulse sequence parameters and predict the SNR gain. Eleven patients underwent conventional unenhanced and the proposed 2D SENSE contrast-enhanced coronary MRA acquisition. Blood-pool SNR, blood-myocardium CNR, visible vessel length, vessel sharpness, and number of side branches were evaluated.RESULTS. Consistent with the numeric simulation, using 2D SENSE in contrast-enhanced coronary MRA resulted in significant improvement in aortic blood-pool SNR (unenhanced vs contrast-enhanced, 37.5 +/- 14.7 vs 121.3 +/- 44.0; p < 0.05) and CNR (14.4 +/- 6.9 vs 101.5 +/- 40.8; p < 0.05) in the patient sample. A longer length of left anterior descending coronary artery was visualized, but vessel sharpness, coronary artery coverage, and image quality score were not improved with the proposed approach.CONCLUSION. In combination with contrast administration, 2D SENSE was found effective in improving SNR and CNR in 3-T whole-heart coronary MRA. Further investigation of cardiac motion compensation is necessary to exploit the SNR and CNR advantages and to achieve submillimeter spatial resolution.
Resumo:
BACKGROUND: Cardiovascular magnetic resonance (CMR) has become an important diagnostic imaging modality in cardiovascular medicine. However, insufficient image quality may compromise its diagnostic accuracy. We aimed to describe and validate standardized criteria to evaluate a) cine steady-state free precession (SSFP), b) late gadolinium enhancement (LGE), and c) stress first-pass perfusion images. These criteria will serve for quality assessment in the setting of the Euro-CMR registry. METHODS: Thirty-five qualitative criteria were defined (scores 0-3) with lower scores indicating better image quality. In addition, quantitative parameters were measured yielding 2 additional quality criteria, i.e. signal-to-noise ratio (SNR) of non-infarcted myocardium (as a measure of correct signal nulling of healthy myocardium) for LGE and % signal increase during contrast medium first-pass for perfusion images. These qualitative and quantitative criteria were assessed in a total of 90 patients (60 patients scanned at our own institution at 1.5T (n=30) and 3T (n=30) and in 30 patients randomly chosen from the Euro-CMR registry examined at 1.5T). Analyses were performed by 2 SCMR level-3 experts, 1 trained study nurse, and 1 trained medical student. RESULTS: The global quality score was 6.7±4.6 (n=90, mean of 4 observers, maximum possible score 64), range 6.4-6.9 (p=0.76 between observers). It ranged from 4.0-4.3 for 1.5T (p=0.96 between observers), from 5.9-6.9 for 3T (p=0.33 between observers), and from 8.6-10.3 for the Euro-CMR cases (p=0.40 between observers). The inter- (n=4) and intra-observer (n=2) agreement for the global quality score, i.e. the percentage of assignments to the same quality tertile ranged from 80% to 88% and from 90% to 98%, respectively. The agreement for the quantitative assessment for LGE images (scores 0-2 for SNR <2, 2-5, >5, respectively) ranged from 78-84% for the entire population, and 70-93% at 1.5T, 64-88% at 3T, and 72-90% for the Euro-CMR cases. The agreement for perfusion images (scores 0-2 for %SI increase >200%, 100%-200%,<100%, respectively) ranged from 81-91% for the entire population, and 76-100% at 1.5T, 67-96% at 3T, and 62-90% for the Euro-CMR registry cases. The intra-class correlation coefficient for the global quality score was 0.83. CONCLUSIONS: The described criteria for the assessment of CMR image quality are robust with a good inter- and intra-observer agreement. Further research is needed to define the impact of image quality on the diagnostic and prognostic yield of CMR studies.
Resumo:
Combined positron emission tomography and computed tomography (PET/CT) scanners play a major role in medicine for in vivo imaging in an increasing number of diseases in oncology, cardiology, neurology, and psychiatry. With the advent of short-lived radioisotopes other than 18F and newer scanners, there is a need to optimize radioisotope activity and acquisition protocols, as well as to compare scanner performances on an objective basis. The Discovery-LS (D-LS) was among the first clinical PET/CT scanners to be developed and has been extensively characterized with older National Electrical Manufacturer Association (NEMA) NU 2-1994 standards. At the time of publication of the latest version of the standards (NU 2-2001) that have been adapted for whole-body imaging under clinical conditions, more recent models from the same manufacturer, i.e., Discovery-ST (D-ST) and Discovery-STE (D-STE), were commercially available. We report on the full characterization both in the two- and three-dimensional acquisition mode of the D-LS according to latest NEMA NU 2-2001 standards (spatial resolution, sensitivity, count rate performance, accuracy of count losses, and random coincidence correction and image quality), as well as a detailed comparison with the newer D-ST widely used and whose characteristics are already published.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.
Resumo:
OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.