983 resultados para Nickel-titanium alloys


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: This study aimed to compare the cytotoxicity of base-metal dental alloys and to evaluate if the casting method could influence their cytotoxicity. Methods: Disks of base-metal dental alloys were cast by two methods: plasma, under argon atmosphere, injected by vacuum-pressure; and oxygen-gas flame, injected by centrifugation, except Ti-6Al-4V and commercially pure titanium (cpTi), cast only by plasma. SCC9 cells were cultured in culture media D-MEM/Ham`s F12 supplemented, at 37 degrees C in a humidified atmosphere of 5% carbon dioxide and 95% air, on the previously prepared disks. At subconfluence in wells without disks (control), cell number and viability were evaluated. Results: In plasma method, cpTi and Ti-6Al-4V were similar to control and presented higher number of cells than all other alloys, followed by Ni-Cr. In oxygen-gas name method, all alloys presented fewer cells than control. Ni-Cr presented more cells than any other alloy, followed by Co-Cr-Mo-W which presented more cells than Ni-Cr-Ti, Co-Cr-Mo, and Ni-Cr-Be. There were no significant differences between casting methods related to cell number. Cell viability was not affected by either chemical composition or casting methods. Conclusion: cpTi and Ti-6Al-4V were not cytotoxic while Ni-Cr-Be was the most cytotoxic among tested alloys. The casting method did not affect cytotoxicity of the alloys. (c) 2007 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants` were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit`s tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route. (c) 2007 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly porous titanium and titanium alloys with an open cell structure are promising implant materials due to their low elastic modulus, excellent bioactivity, biocompatibility and the ability for bone regeneration. However, the mechanical strength of the porous titanium decreases dramatically with increasing porosity, which is a prerequisite for the ingrowth of new bone tissues and vascularization. In the present study, porous titanium with porosity gradients, i.e. solid core with highly porous outer shell was successfully fabricated using a powder metallurgy approach. Satisfactory mechanical properties derived from the solid core and osseointegration capacity derived from the outer shell can be achieved simultaneously through the design of the porosity gradients of the porous titanium. The outer shell of porous titanium exhibited a porous architecture very close to
that of natural bone, i.e. a porosity of 70% and pore size distribution in the range of 200 - 500 μm. The peak stress and the elastic modulus of the porous titanium with a porosity gradient (an overall porosity 63%) under compression were approximately 152 MPa and 4 GPa, respectively. These
properties are very close to those of natural bone. For comparison, porous titanium with a uniform porosity of 63% was also prepared and haracterised in the present study. The peak stress and the elastic modulus were 109 MPa and 4 GPa, respectively. The topography of the porous titanium
affected the mechanical properties significantly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Use of hydrogen as a temporary alloying element in titanium alloys is an attractive approach to improve the mechanical properties of the materials, enhance processability and thereby reduce manufacturing costs. In this paper, the hydrogen diffusion process and the phase transformation both between titanium particles and in titanium sheets were computationally simulated to analyze the mechanism of hydrogen diffusion in different phases (α-Ti, β-Ti and TiHx). With the simulation based on the thermodynamics and kinetics, quantitative behaviors of the hydrogen diffusion and the phase transformation were analyzed. The simulation results provide an insight into the diffusion process and improve the fundamental understanding of the mechanism of diffusion and phase transformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interest in using titanium (Ti) alloys as load-bearing implant materials has increased due to their high strength to weight ratio, lower elastic modulus, and superior biocompatibility and enhanced corrosion resistance compared to conventional metals such as stainless steel and Co-Cr alloys. In the present study, the in vitro cytotoxicity of five binary titanium alloys, Ti15Ta, Ti15Nb, Ti15Zr, Ti15Sn and Ti15Mo, was assessed using human osteosarcoma cell line, SaOS-2 cells. The Cell proliferation and viability were determined, and cell adhesion and morphology on the surfaces of the binary Ti alloys after cell culture were observed by SEM. Results indicated that the Ti binary alloys of Ti15Ta, Ti15Nb and Ti15Zr exhibited the same level of excellent biocompatibility; Ti15Sn alloy exhibited a moderate biocompatibility while Ti15Mo alloy exhibited a moderate cytotoxicity. The SaOS-2 osteoblast-like cells had flattened and spread across the surfaces of the Ti15Ta, Ti15Nb, Ti15Zr and Ti15Sn groups; however, the cell shapes on the Ti15Mo alloy was shrinking and unhealthy. These results indicated that the Mo contents should be limited to a certain level in the design and development of new Ti alloys for implant material applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS2 cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 μg/L for molybdenum, titanium, niobium, and silicon, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Similar and dissimilar butt joint welds comprising combinations of commercially pure grade 4 titanium (CP-Ti), Ti-6Al-4V (Ti-64) and Ti-5Al-5V-5Mo-3Cr (Ti-5553) were created using the electron beam process. The resultant welds were studied by means of metallography, optical microscopy, mechanical testing and scanning electron microscopy. Mechanical testing was performed on welded samples to study the joint integrity and fracture characteristics. A scanning electron microscope investigation was performed on the fracture surface to reveal their fracture modes. While all weldments were crack free and most weldments exhibited mechanical properties comparable to the base metal, negligible ductility was exhibited during tensile testing joints of Ti- 5553 welded to either Ti-64 or Ti-5553.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, porous Ti14Nb4Sn alloys were fabricated using a space holder sintering method, resulting in a porosity of ~70%. Scanning electron microscopy (SEM) analyses revealed a combination of both macropore and micropore structures. The fabricated titanium alloy scaffolds exhibited a similar structure to that of natural bone, which is expected to improve bone implant longevity. Bacterial cells of Pseudomonas aeruginosa ATCC 9027 were employed for the in vitro test.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anodization of titanium and its alloys, under controlled conditions, generates a nanotubular architecture on the material surface. The biological consequences of such changes are poorly understood, and therefore, we have analyzed the cellular and molecular responses of osteoblasts that were plated on nanotubular anodized surface of a titanium-zirconium (TiZr) alloy. Upon comparing these results with those obtained on acid etched and polished surfaces of the same alloy, we observed a significant increase in adhesion and proliferation of cells on anodized surfaces as compared to acid etched or polished surface. The expression of genes related to cell adhesion was high only on anodized TiZr, but that of genes related to osteoblast differentiation and osteocalcin protein and extracellular matrix secretion were higher on both anodized and acid etched surfaces. Examination of surface morphology, topography, roughness, surface area and wettability using scanning electron microscopy, atomic force microscopy, and contact angle goniometry, showed that higher surface area, hydrophilicity, and nanoscale roughness of nanotubular TiZr surfaces, which were generated specifically by the anodization process, could strongly enhance the adhesion and proliferation of osteoblasts. We propose that biological properties of known bioactive titanium alloys can be further enhanced by generating nanotubular surfaces using anodization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium alloys are of great demand in the aerospace and biomedical industries. Most the titanium products are either cast or sintered to required shape and finish machined to get the appropriate surface texture to meet the design requirements. Ti-6Al-4V is often referred as work horse among the titanium alloys due to its heavy use in the aerospace industry. This paper is an attempt to investigate and improve the machining performance of Ti-6Al-4V. Thin wall machining is an advance machining technique especially used in machining turbine blades which can be done both in a conventional way and using a special technique known as trochoidal milling. The experimental design consists of conducting trials using combination of cutting parameters such as cutting speed (vc), 90 and 120 m/min; feed/tooth (fz) of 0.25 and 0.35 mm/min; step over (ae) 0.3 and 0.2; at constant depth of cut (ap) 20mm and using coolant. A preliminary assessment of machinability of Ti-6Al-4V during thin wall machining using trochoidal milling is done. A correlation established using cutting force, surface texture and dimensional accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research will definitely give guidelines to industries associated with titanium slot machining.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article correlates laboratory-based understanding in machining of titanium alloys with the industry based outputs and finds possible solutions to improve machining efficiency of titanium alloy Ti-6Al-4V. The machining outputs are explained based on different aspects of chip formation mechanism and practical issues faced by industries during titanium machining. This study also analyzed and linked the methods that effectively improve the machinability of titanium alloys. It is found that the deformation mechanism during machining of titanium alloys is complex and causes basic challenges, such as sawtooth chips, high temperature, high stress on cutting tool, high tool wear and undercut parts. These challenges are correlated and affected by each other. Sawtooth chips cause variation in cutting forces which results in high cyclic stress on cutting tools. On the other hand, low thermal conductivity of titanium alloy causes high temperature. These cause a favorable environment for high tool wear. Thus, improvements in machining titanium alloy depend mainly on overcoming the complexities associated with the inherent properties of this alloy. Vibration analysis kit, high pressure coolant, cryogenic cooling, thermally enhanced machining, hybrid machining and, use of high conductive cutting tool and tool holders improve the machinability of titanium alloy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)