221 resultados para Neptune (Steamship)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid μ and δ receptors) mediated chemotaxis; the β2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the μ-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two βγ sequestering proteins (βARK-ct and αt) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free βγ subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persistent directional movement of neutrophils in shallow chemotactic gradients raises the possibility that cells can increase their sensitivity to the chemotactic signal at the front, relative to the back. Redistribution of chemoattractant receptors to the anterior pole of a polarized neutrophil could impose asymmetric sensitivity by increasing the relative strength of detected signals at the cell’s leading edge. Previous experiments have produced contradictory observations with respect to receptor location in moving neutrophils. To visualize a chemoattractant receptor directly during chemotaxis, we expressed a green fluorescent protein (GFP)-tagged receptor for a complement component, C5a, in a leukemia cell line, PLB-985. Differentiated PLB-985 cells, like neutrophils, adhere, spread, and polarize in response to a uniform concentration of chemoattractant, and orient and crawl toward a micropipette containing chemoattractant. Recorded in living cells, fluorescence of the tagged receptor, C5aR–GFP, shows no apparent increase anywhere on the plasma membrane of polarized and moving cells, even at the leading edge. During chemotaxis, however, some cells do exhibit increased amounts of highly folded plasma membrane at the leading edge, as detected by a fluorescent probe for membrane lipids; this is accompanied by an apparent increase of C5aR–GFP fluorescence, which is directly proportional to the accumulation of plasma membrane. Thus neutrophils do not actively concentrate chemoattractant receptors at the leading edge during chemotaxis, although asymmetrical distribution of membrane may enrich receptor number, relative to adjacent cytoplasmic volume, at the anterior pole of some polarized cells. This enrichment could help to maintain persistent migration in a shallow gradient of chemoattractant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actualmente se ha detectado la existencia de un gradiente de biodiversidad, marcado por el eje Nor-Oeste/Sur-Este y justificado por variables ambientales claves como la latitud, salinidad, temperatura, circulación de las masas de agua, etc. La conjunción de estas variables hacen del litoral de Murcia una de las zonas de mayor biodiversidad del Mediterráneo, mar ya de por sí caracterizado por una alta biodiversidad. Una de las singularidades paisajísticas del litoral murciano son los cañones submarinos cercanos a la línea de costa, propuestos en la Cumbre Mundial de Desarrollo Sostenible de Johannesburgo (2002) como hábitats únicos de gran importancia ecológica. La disposición geográfica del litoral murciano lo convierte en una pantalla que frena el agua procedente del Atlántico y que pasa por Gibraltar, configurando un espacio marino en el que convergen especies mediterráneas y atlánticas, tanto a nivel pelágico como nerítico. La Región de Murcia muestra una gran cantidad de hábitats marinos contenidos en la Lista Patrón de Hábitats Marinos presentes en España, pero si existe un hábitat emblemático en el medio marino mediterráneo y, por ende, en el litoral de la Región de Murcia, es el generado por las praderas de Posidonia oceanica (Posidonietum oceanicae). Otro importantísimo valor natural regional es la laguna salada del Mar Menor, hábitat prioritario de la Directiva Hábitats, que alberga importantes poblaciones de caballito de mar, langostinos y otras especies de interés, además de ser un importante lugar de paso e invernada de aves acuáticas, limícolas y marinas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contains chiefly correspondence with Secretary of State William Pitt, including a letter, dated 22 Sept. 1759, describing the fall of Québec and the death of Wolfe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the harbours of Hampton, Newbury, Ipswich, Jebeka, Squam, Cape Ann, Manchester, Beverly, Salem, Marble Head &c.] (sheet originally published in 1776). The map is [sheet 23] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Covers coastal Massachusetts from Ipswich Harbor to Marblehead. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the harbours of Hampton, Newbury, Ipswich, Jebeka, Squam, Cape Ann, Manchester, Beverly, Salem, Marble Head &c.] (sheet originally published in 1776). The map is [sheet 24] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers coastal Massachusetts and New Hampshire from Ipswich Harbor, Massachusetts to Hampton Harbor, New Hampshire. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the coast from Cape Elizabeth westwards to Newbury Harbour] (sheet originally published in 1776). The map is [sheet 25] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:130,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map. Covers the coast of New England from Newburyport, Massachusetts to Kittery, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.