910 resultados para Negative Binomial Regression Model (NBRM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General Introduction This thesis can be divided into two main parts :the first one, corresponding to the first three chapters, studies Rules of Origin (RoOs) in Preferential Trade Agreements (PTAs); the second part -the fourth chapter- is concerned with Anti-Dumping (AD) measures. Despite wide-ranging preferential access granted to developing countries by industrial ones under North-South Trade Agreements -whether reciprocal, like the Europe Agreements (EAs) or NAFTA, or not, such as the GSP, AGOA, or EBA-, it has been claimed that the benefits from improved market access keep falling short of the full potential benefits. RoOs are largely regarded as a primary cause of the under-utilization of improved market access of PTAs. RoOs are the rules that determine the eligibility of goods to preferential treatment. Their economic justification is to prevent trade deflection, i.e. to prevent non-preferred exporters from using the tariff preferences. However, they are complex, cost raising and cumbersome, and can be manipulated by organised special interest groups. As a result, RoOs can restrain trade beyond what it is needed to prevent trade deflection and hence restrict market access in a statistically significant and quantitatively large proportion. Part l In order to further our understanding of the effects of RoOs in PTAs, the first chapter, written with Pr. Olivier Cadot, Celine Carrère and Pr. Jaime de Melo, describes and evaluates the RoOs governing EU and US PTAs. It draws on utilization-rate data for Mexican exports to the US in 2001 and on similar data for ACP exports to the EU in 2002. The paper makes two contributions. First, we construct an R-index of restrictiveness of RoOs along the lines first proposed by Estevadeordal (2000) for NAFTA, modifying it and extending it for the EU's single-list (SL). This synthetic R-index is then used to compare Roos under NAFTA and PANEURO. The two main findings of the chapter are as follows. First, it shows, in the case of PANEURO, that the R-index is useful to summarize how countries are differently affected by the same set of RoOs because of their different export baskets to the EU. Second, it is shown that the Rindex is a relatively reliable statistic in the sense that, subject to caveats, after controlling for the extent of tariff preference at the tariff-line level, it accounts for differences in utilization rates at the tariff line level. Finally, together with utilization rates, the index can be used to estimate total compliance costs of RoOs. The second chapter proposes a reform of preferential Roos with the aim of making them more transparent and less discriminatory. Such a reform would make preferential blocs more "cross-compatible" and would therefore facilitate cumulation. It would also contribute to move regionalism toward more openness and hence to make it more compatible with the multilateral trading system. It focuses on NAFTA, one of the most restrictive FTAs (see Estevadeordal and Suominen 2006), and proposes a way forward that is close in spirit to what the EU Commission is considering for the PANEURO system. In a nutshell, the idea is to replace the current array of RoOs by a single instrument- Maximum Foreign Content (MFC). An MFC is a conceptually clear and transparent instrument, like a tariff. Therefore changing all instruments into an MFC would bring improved transparency pretty much like the "tariffication" of NTBs. The methodology for this exercise is as follows: In step 1, I estimate the relationship between utilization rates, tariff preferences and RoOs. In step 2, I retrieve the estimates and invert the relationship to get a simulated MFC that gives, line by line, the same utilization rate as the old array of Roos. In step 3, I calculate the trade-weighted average of the simulated MFC across all lines to get an overall equivalent of the current system and explore the possibility of setting this unique instrument at a uniform rate across lines. This would have two advantages. First, like a uniform tariff, a uniform MFC would make it difficult for lobbies to manipulate the instrument at the margin. This argument is standard in the political-economy literature and has been used time and again in support of reductions in the variance of tariffs (together with standard welfare considerations). Second, uniformity across lines is the only way to eliminate the indirect source of discrimination alluded to earlier. Only if two countries face uniform RoOs and tariff preference will they face uniform incentives irrespective of their initial export structure. The result of this exercise is striking: the average simulated MFC is 25% of good value, a very low (i.e. restrictive) level, confirming Estevadeordal and Suominen's critical assessment of NAFTA's RoOs. Adopting a uniform MFC would imply a relaxation from the benchmark level for sectors like chemicals or textiles & apparel, and a stiffening for wood products, papers and base metals. Overall, however, the changes are not drastic, suggesting perhaps only moderate resistance to change from special interests. The third chapter of the thesis considers whether Europe Agreements of the EU, with the current sets of RoOs, could be the potential model for future EU-centered PTAs. First, I have studied and coded at the six-digit level of the Harmonised System (HS) .both the old RoOs -used before 1997- and the "Single list" Roos -used since 1997. Second, using a Constant Elasticity Transformation function where CEEC exporters smoothly mix sales between the EU and the rest of the world by comparing producer prices on each market, I have estimated the trade effects of the EU RoOs. The estimates suggest that much of the market access conferred by the EAs -outside sensitive sectors- was undone by the cost-raising effects of RoOs. The chapter also contains an analysis of the evolution of the CEECs' trade with the EU from post-communism to accession. Part II The last chapter of the thesis is concerned with anti-dumping, another trade-policy instrument having the effect of reducing market access. In 1995, the Uruguay Round introduced in the Anti-Dumping Agreement (ADA) a mandatory "sunset-review" clause (Article 11.3 ADA) under which anti-dumping measures should be reviewed no later than five years from their imposition and terminated unless there was a serious risk of resumption of injurious dumping. The last chapter, written with Pr. Olivier Cadot and Pr. Jaime de Melo, uses a new database on Anti-Dumping (AD) measures worldwide to assess whether the sunset-review agreement had any effect. The question we address is whether the WTO Agreement succeeded in imposing the discipline of a five-year cycle on AD measures and, ultimately, in curbing their length. Two methods are used; count data analysis and survival analysis. First, using Poisson and Negative Binomial regressions, the count of AD measures' revocations is regressed on (inter alia) the count of "initiations" lagged five years. The analysis yields a coefficient on measures' initiations lagged five years that is larger and more precisely estimated after the agreement than before, suggesting some effect. However the coefficient estimate is nowhere near the value that would give a one-for-one relationship between initiations and revocations after five years. We also find that (i) if the agreement affected EU AD practices, the effect went the wrong way, the five-year cycle being quantitatively weaker after the agreement than before; (ii) the agreement had no visible effect on the United States except for aone-time peak in 2000, suggesting a mopping-up of old cases. Second, the survival analysis of AD measures around the world suggests a shortening of their expected lifetime after the agreement, and this shortening effect (a downward shift in the survival function postagreement) was larger and more significant for measures targeted at WTO members than for those targeted at non-members (for which WTO disciplines do not bind), suggesting that compliance was de jure. A difference-in-differences Cox regression confirms this diagnosis: controlling for the countries imposing the measures, for the investigated countries and for the products' sector, we find a larger increase in the hazard rate of AD measures covered by the Agreement than for other measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The survival of Bifidobacterium longum NCIMB 8809 was studied during refrigerated storage for 6 weeks in model solutions, based on which a mathematical model was constructed describing cell survival as a function of pH, citric acid, protein and dietary fibre. A Central Composite Design (CCD) was developed studying the influence of four factors at three levels, i.e., pH (3.2–4), citric acid (2–15 g/l), protein (0–10 g/l), and dietary fibre (0–8 g/l). In total, 31 experimental runs were carried out. Analysis of variance (ANOVA) of the regression model demonstrated that the model fitted well the data. From the regression coefficients it was deduced that all four factors had a statistically significant (P < 0.05) negative effect on the log decrease [log10N0 week−log10N6 week], with the pH and citric acid being the most influential ones. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate and strawberry. The highest cell survival (less than 0.4 log decrease) after 6 weeks of storage was observed in orange and pineapple, both of which had a pH of about 3.8. Although the pH of grapefruit and blackcurrant was similar (pH ∼3.2), the log decrease of the former was ∼0.5 log, whereas of the latter was ∼0.7 log. One reason for this could be the fact that grapefruit contained a high amount of citric acid (15.3 g/l). The log decrease in pomegranate and strawberry juices was extremely high (∼8 logs). The mathematical model was able to predict adequately the cell survival in orange, grapefruit, blackcurrant, and pineapple juices. However, the model failed to predict the cell survival in pomegranate and strawberry, most likely due to the very high levels of phenolic compounds in these two juices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.