995 resultados para Ne Waza
Resumo:
Published contemporary dinoflagellate distributional data from the NE Pacific margin and estuarine environments (n = 136) were re-analyzed using Canonical Correspondence Analysis (CCA) and partial Canonical Correspondence Analysis (pCCA). These analyses illustrated the dominant controls of winter temperature and productivity on the distribution of dinoflagellate cysts in this region. Dinoflagellate cyst-based predictive models for winter temperature and productivity were developed from the contemporary distributional data using the modern analogue technique and applied to subfossil data from two mid to late Holocene (~5500 calendar years before present–present) cores; TUL99B03 and TUL99B11, collected from Effingham Inlet, a 15 km long anoxic fjord located on the southwest coast of Vancouver Island that directly opens to the Pacific Ocean through Barkley Sound. Sedimentation within these basins largely comprises annually deposited laminated couplets, each made up of a winter deposited terrigenous layer and spring to fall deposited diatomaceous layer. The Effingham Inlet dinoflagellate cyst record provides evidence of a mid-Holocene gradual decline in winter SST, ending with the initiation of neoglacial advances in the region by ~3500 cal BP. A reconstructed Late Holocene increase in winter SST was initiated by a weakening of the California Current, which would have resulted in a warmer central gyre and more El Niño-like conditions.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in H-like N VII, O VIII, F IX, Ne X and Na XI. The general-purpose relativistic atomic structure package (grasp) is adopted for calculating energy levels and radiative rates, while the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used for determining the collision strengths and subsequently the excitation rates. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 25 levels of the above five ions. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths so obtained are reported over a wide temperature range below 10(7) K. Additionally, lifetimes are also given for all the calculated energy levels of the above five ions.
Resumo:
In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like N V, F VII, Ne VIII and Na IX. The general-purpose relativistic atomic structure package (GRASP) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of N V, F VII, Ne VIII and Na IX. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 10(6.6) K. Additionally, lifetimes are also reported for all calculated levels of the above four ions.
Resumo:
We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions, Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration, Time-integrated; time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s (J=0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Angstrom 221 Angstrom and 212 Angstrom respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10(-5)-10(-1) and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at similar to 2x10(-3) pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of similar to 1.3x10(13) W cm(-2) on a 20 mm target. The Zn lasing emission had a duration of similar to 240 ps and this was insensitive to prepulse fraction. The J=0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to haveno significant influence on the output intensity of the 3p-3s (J=2-1) lines of any of the elements investigated.
Resumo:
We report a study of the effect of prepulses on XUV lasing of Ne-like germanium for an irradiation geometry where approximate to 20 mm long germanium slab targets were irradiated at approximate to 1.6 x 10(13) W cm(-2) using approximate to 0.7 ns (1.06 mu m) pulses from the VULCAN glass laser. Prepulses were generated at fractional power levels of approximate to 2 x 10(-4) (low) and approximate to 2 x 10(-2) (high) and arrived on target 5 and 3.2 ns respectively in advance of the main heating pulse, For both the low and high prepulses the output of the 3p-3s, J = 0-1, line at 19.6 nm was enhanced such that the peak radiant density (J/st) for this line became greater than that for the normally stronger J = 2-1 lines at 23.2 and 23.6 nm. The J = 0-1 line, whose FWHM duration was reduced from approximate to 450 ps to approximate to 100 ps, delivered approximate to 6 x more power (W) than the average for the combined J = 2-1 lines, whose FWHM duration was approximate to 500 ps for both levels of prepulse, The higher prepulse was more effective, yielding approximate to 2 x more radiant density and approximate to 7 x more power on both the J = 0-1 and J = 2-1 transitions compared to the low prepulse case, The most dramatic observation overall was the approximate to 40 x increase of power in the J = 0-1 line for the high prepulse (approximate to 2%) case compared with the zero prepulse case. These observations, coupled with measurements of beam divergence and beam deviation through refractive bending, as well as general agreement with modelling, lead us to conclude that, for germanium, the main influence of the prepulse is (a) to increase the energy absorbed from the main pulse, (b) to increase the volume of the gain zone and (c) to relax the plasma density gradients, particularly in the J = 0-1 gain zone.