998 resultados para NERVE MONITORING
Resumo:
We have demonstrated that phrenic nerves` large myelinated fibers in streptozotocin (STZ)-induced diabetic rats show axonal atrophy, which is reversed by insulin treatment. However, studies on structural abnormalities of the small myelinated and the unmyelinated fibers in the STZ-model of neuropathy are limited. Also, structural changes in the endoneural vasculature are not clearly described in this model and require detailed study. We have undertaken morphometric studies of the phrenic nerve in insulin-treated and untreated STZ-diabetic rats and non-diabetic control animals over a 12-week period. The presence of neuropathy was assessed by means of transmission electron microscopy, and morphometry of the unmyelinated fibers was performed. The most striking finding was the morphological evidence of small myelinated fiber neuropathy due to the STZ injection, which was not protected or reversed by conventional insulin treatment. This neuropathy was clearly associated with severe damage of the endoneural vessels present on both STZ groups, besides the insulin treatment. The STZ-diabetes model is widely used to investigate experimental diabetic neuropathies, but few studies have performed a detailed assessment of either unmyelinated fibers or capillary morphology in this animal model. The present study adds useful information for further investigations on the ultrastructural basis of nerve function in diabetes.
Resumo:
Aging affects peripheral nerve function and regeneration in experimental models but few literature reports deal with animals aged more than one year. We investigated morphological and morphometric aspects of the sural nerve in aging rats. Female Wistar rats 360, 640 and 720 days old were killed, proximal and distal segments of the right and left sural nerves were prepared for light microscopy and computerized morphometry. No morphometric differences between proximal and distal segments or between right and left sides at the same levels were found in all experimental groups. No increase in fiber and axon sizes was observed from 360 to 720 days. Likewise, no difference in total myelinated fiber number was observed between groups. Myelinated fiber population distribution was bimodal, being the 720-days old animals` distribution shifted to the left, indicating a reduction of the fiber diameters. The 9 ratio distribution of the 720-days old animals` myelinated fiber was also shifted to the left, which suggests axonal atrophy. Morphological alterations due to aging were observed, mainly related to the myelin sheath, which suggests demyelination. Large fibers were more affected than the smaller ones. Axon abnormalities were not as common or as obvious as the myelin changes and Wallerian degeneration was rarely found. These alterations were observed in all experimental groups but were much less pronounced in rats 360 days old and their severity increased with aging. in conclusion, the present study indicates that the aging neuropathy present in the sural nerve of female rats is both axonal and demyelinating. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The rat saphenous nerve contains only somato-sensory fibers and is used in investigations of neuropathic pain and its treatment. Due to its superficial anatomical path, the saphenous nerve is also widely used in electrophysiological studies. Nevertheless, morphologic and morphometric descriptions of the normal saphenous nerve are scanty in the literature and information on useful morphometric parameters of this nerve is still missing. Thus, the present study aimed to investigate the longitudinal and lateral symmetry of the saphenous nerve in young rats. Proximal and distal segments of the left and right saphenous nerves from female Wistar rats, aged 30 days (N = 5) were morphometrically evaluated and comparisons were made between sides and segments. Our results show that the saphenous nerve is longitudinally and laterally symmetric since there were no morphometric differences between proximal and distal segments, as well as between right and left sides. This lateral symmetry is important in order to validate those experiments in which the contralateral nerve is used as the control. Also, the longitudinal symmetry information is fundamental to further studies involving the ""dying back"" neuropathy models. The present study adds to the literature new morphometric information on the rat saphenous nerve that might be useful for a better interpretation of further studies involving this nerve and experimental models of nerve diseases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective. The purpose of this study was to evaluate the diagnostic usefulness of ulnar nerve sonography in leprosy neuropathy with electrophysiologic correlation. Methods. Twenty-one consecutive patients with leprosy (12 men and 9 women; mean age +/- SD, 47.7 +/- 17.2 years) and 20 control participants (14 men and 6 women; mean age, 46.5 +/- 16.2 years) were evaluated with sonography. Leprosy diagnosis was established on the basis of clinical, bacteriologic, and histopathologic criteria. The reference standard for ulnar neuropathy in this study was clinical symptoms in patients with proven leprosy The sonographic cross-sectional areas (CSAs) of the ulnar nerve in 3 different regions were obtained. Statistical analyses included Student t tests and receiver operating characteristic curve analysis. Results. The CSAs of the ulnar nerve were significantly larger in the leprosy group than the control group for all regions (P < .01). Sonographic abnormalities in leprosy nerves included focal thickening (90.5%), hypoechoic areas (81%), loss of the fascicular pattern (33.3%), and focal hyperechoic areas (4.7%). Receiver operating characteristic curve analysis showed that a maximum CSA cutoff value of 9.8 mm(2) was the best discriminator (sensitivity, 0.91; specificity, 0.90). Three patients with normal electrophysiologic findings had abnormal sonographic findings. Two patients had normal sonographic findings, of which 1 had abnormal electrophysiologic findings, and the other refused electrophysiologic testing. Conclusions. Sonography and electrophysiology were complementary for identifying ulnar nerve neuropathy in patients with leprosy, with clinical symptoms as the reference standard. This reinforces the role of sonography in the investigation of leprosy ulnar neuropathy.
Resumo:
Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.
Resumo:
The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
Resumo:
The vagus nerve is an important component of the efferent arm of the baroreflex. Blood pressure levels as well as baroreflex control of circulation are significantly different in male and female spontaneously hypertensive rats (SHR). We proposed to investigate the morphometric differences between genders using the vagus nerve of SHR. Adult animals (20 weeks old) were anesthetized and had their arterial pressure (AP) and heart rate (HR) recorded by a computerized system. The rats were then systemically perfused with a fixative solution and had their cervical vagi nerves prepared for light microscopy. Proximal and distal segments of the left and right vagi nerves were evaluated for morphometric parameters including fascicle area and diameter, myelinated fiber number, density, area and diameter. Comparisons were made between sides and segments on the same gender as well as between genders. Differences were considered significant when p<0.05. Male SHR had significantly higher AP and HR. Morphometric data showed no differences between the same levels of both sides and between segments on the same side for male and female rats. In addition, no significant morphometric differences were observed when genders were compared. This is the first description of vagus nerve morphometry in SHR indicating that gender differences in AP and HR cannot be attributed to dissimilarities in vagal innervation of the heart. These data provide a morphological basis for further studies involving functional investigations of the efferent arm of the baroreflex in hypertension. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study describes the normal morphology and morphometry of the dorsal cutaneous branch of the ulnar nerve (DCBU) in humans. Fourteen nerves of eight donors were prepared by conventional techniques for paraffin and epoxy resin embedding. Semiautomatic morphometric analysis was performed by means of specific computer software. Histograms of the myelinated and unmyelinated fiber population and the G-ratio distribution of fibers were plotted. Myelinated fiber density per nerve varied from 5,910 to 10,166 fibers/mm(2), with an average of 8,170 +/- 393 fibers/mm(2). The distribution was bimodal with peaks at 4.0 and 9.5 mu m. Unmyelinated fiber density per nerve varied from 50,985 to 127,108, with an average of 78,474 +/- 6, 610 fibers/mm(2), with a unimodal distribution displaying a peak at 0.8 mu m. This study thus adds information about the fascicles and myelinated and unmyelinated fibers of DCBU nerves in normal people, which may be useful in further studies concerning ulnar nerve neuropathies, mainly leprosy neuropathy.
Resumo:
Aims: To evaluate cell catabolism by balance of nitrogen and phosphate, and creatinine excretion in children post-cardiac surgery; to establish protein and energy requirements to minimize catabolism; and to assess nutritional therapy by following these parameters and serial anthropometric measurements. Methods: A prospective observational study of children with congenital heart disease undergoing cardiac surgery. Blood samples and 24-h urine collections were obtained postoperatively for creatinine measurement and nitrogen and phosphate balance. Anthropometric measurements (weight, mid-arm muscle circumference and triceps skinfold thickness) were obtained preoperatively and at paediatric intensive care unit and hospital discharge. Results: Eleven children were studied for 3-10 postoperative days. Anabolism was associated with higher protein and energy intakes compared to catabolism (1.1 vs. 0.1 g/kg/day and 54 vs. 17 kcal/kg/day, respectively). On days with anabolism, phosphate balance was greater compared with that on days with catabolism. Daily creatinine excretion did not correlate with protein balance. Anthropometric measurements did not change significantly over time. Conclusions: Children with congenital heart disease undergoing cardiac surgery achieved anabolism with > 55 kcal/kg/day and > 1 g/kg/day of protein. Balance of phosphate was useful to monitor cell breakdown. Anthropometric measurements were not valuable to evaluate nutritional therapy in this population.
Resumo:
The aim of this paper was to verify whether AC biosusceptometry (ACB) is suitable for monitoring gastrointestinal (GI) contraction directly from smooth muscle in dogs, comparing with electrical recordings simultaneously. All experiments were performed in dogs with magnetic markers implanted under the serosa of the right colon and distal stomach, and their movements were recorded by ACB. Monopolar electrodes were implanted close to the magnetic markers and their electric potentials were recorded by electromyography (EMG). The effects of neostigmine, hyoscine butylbromide and meal on gastric and colonic parameters were studied. The ACB signal from the distal stomach was very similar to EMG; in the colonic recordings, however, within the same low-frequency band, ACB and EMG signals were characterized by simultaneity or a widely changeable frequency profile with time. ACB recordings were capable of demonstrating the changes in gastric and colonic motility determined by pharmacological interventions as well as by feeding. Our results reinforce the importance of evaluating the mechanical and electrical components of motility and show a temporal association between them. ACB and EMG arecomplementary for studying motility, with special emphasis on the colon. ACB offers an accurate method for monitoring in vivo GI motility.