963 resultados para NANOTUBE-MODIFIED ELECTRODES
Resumo:
Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA.
Resumo:
Supramolecular organized multilayers were constructed by multiwalled carbon nanotubes modified with ferrocene-derivatized poly(allylamine) redox polymer and glucose oxidase by electrostatic self-assembly. From the analysis of voltammetric signals and fluorescence results, a linear increment of the coverage of enzyme per bilayer was estimated, which demonstrated that the multilayer is constructed in a spatially ordered manner. The cyclic voltammograms obtained from the indium tin oxide (ITO) electrodes coated by the (Fc-PAH@CNT/GOx)(n) multilayers revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers; that is, the sensitivity is tunable by controlling the number of bilayers associated with ITO electrodes. The incorporation of redox-polymer-functionalized carbon nanotubes (CNT) into enzyme films resulted in a 6-10-fold increase in the glucose electrocatalytic current; the bimolecular rate constant of FADH(2) oxidation (wiring efficiency) was increased up to 12-fold. Impedance spectroscopy data have yielded the electron diffusion coefficient (D-e) of this nanostructure to be over 10(-8) cm(2) s(-1), which is typically higher than those systems without CNT by at least a factor of 10, indicating that electron transport in the new supramolecular architecture was enhanced by communication of the redox active site of enzyme, redox polymer, and CNT.
Resumo:
Glucose oxidase and laccase immobilized at multiwalled carbon nanotubes-ionic liquid gel modified electrodes are used as the catalysts of anode and cathode of biofuel cells (BFCs), respectively. The BFC based on glucose and air is proposed. When ferrocene monocarboxylic acid is adopted as the mediator of anode, the power output of the BFC is ca. 4.1 mu W (power density ca. 10.0 mu W cm(-2)), which is higher than the value of 2.7 mu W (power density ca. 6.6 mu W cm(-2)) by taking ferrocene dicarboxylic acid as the mediator. This implies that the mediator with formal potential closing to that of the enzyme does improve the power output. Furthermore, the power output of the BFC is greatly improved by taking grape juice as the fuel of anode rather than glucose. This system also indicates that grape juice as a fuel of the BFC not only is feasible and can also enhances the power output of the BFCs. Besides, it greatly lowers the cost and simplifies the preparation procedure of the BFCs, making the BFC towards "green" bioenergy.
Resumo:
Through a new and simple ion-exchange route, two-electron redox mediator thionine has been deliberately incorporated into the carbon nanotubes (CNTs)/Nafion composite film due to the fact that there is strong interaction between any of two among the three materials (ion-exchange process between thionine and Nafion, strong adsorption of thionine by CNTs, and wrapping and solubilizing of CNTs with Nation). The good homogenization of electron conductor CNTs in the integrated films provides the possibility of three-dimensional electron conductive network. The resulting integrated films exhibited high and stable electrocatalytic activity toward NADH oxidation with the significant decrease of high overpotential, which responds more sensitively more than those modified by thioine or CNTs alone. Such high electrocatalytic activity facilitated the low potential determination of NADH (as low as -0.1 V), which eliminated the interferences from other easily oxidizable species. In a word, the immobilization approach is very simple, timesaving and effective, which could be extended to the immobilization of other cationic redox mediators into the CNTs/Nafion composite film. And these features may offer potential promise for the design of amperometric biosensors.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
Polyaniline-camphorsulfonic acid (PAN-CSA) composite film on platinum electrode surface has been synthesized via the electrochemical polymerization of aniline in the presence of camphorsulfonic acid (CSA). It was found that the doping of polyaniline (PAN) with CSA extends the electroactivity of PAN in neutral and even in alkaline media. The PAN-CSA composite film coated platinum electrodes are shown to be good electrocatalytic surfaces for the oxidation of ascorbic acid (AA) in phosphate buffer solution (PBS) of pH 7.0. The anodic peak potential of AA shifts from 0.63 V at the bare platinum electrode to 0.34 V at the PAN-CSA composite modified platinum electrode with a greatly enhanced current response. A linear calibration graph is obtained over the AA concentration range of 5-50 mM using cyclic voltammetry. The kinetics of the catalytic reaction are investigated using rotating disk electrode voltammetry and chronoamperometry. The results are explained using the theory of electrocatalytic reactions at chemically modified electrodes. The PAN-CSA composite on the electrode surface shows good reproducibility and stability.
Resumo:
The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.
Resumo:
The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.
Resumo:
Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.
Resumo:
Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
Through layer-by-layer method [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) and polyoxometalyte were alternately deposited on 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV), UV/visible absorption spectroscopy, and atomic force microscopy (AFM). It was proved that the multilayer films are uniform and stable. CoTMPyP-containing multilayer films exhibit remarkable electrocatalytic activity for the reduction of O-2. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry confirm that P2W18/CoTMPyP multilayer films can catalyze the four-electron almost reduction of O-2 to water in pH > 4.0 buffer solution, while SiW12/CoTMPyP multilayer films catalyze about two-electron reduction of O-2 to H2O2 in pH 1 - 6 buffer solutions. The kinetic constants for O-2 reduction were comparatively investigated at P2W18/CoTMPyP and SiW12/CoTMPyP multilayer films electrodes.
Resumo:
We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.
Resumo:
Direct electrochemistry of hemoglobin was observed in stable thin film composed of a natural lipid (egg-phosphatidylcholine) and hemoglobin on pyrolytic graphite (PG) electrode. Hemoglobin in lipid films shows thin layer electrochemistry behavior. The formal potential Edegrees' of hemoglobin in the lipid film was linearly varied with pH in the range from 3.5 to 7.0 with a slope of -46.4 mV pH(-1) Hemoglobin in the lipid film exhibited elegant catalytic activity for electrochemical reduction of H202, based which a unmediated biosensor for H2O2 was developed.
Resumo:
Adsorption of a monolayer of didecanoyl-L-alpha-phosphatidylcholine (DDPC) from dispersions of small unilamellar vesicles onto hydrophobic surfaces was investigated by mean of cyclic voltammetry and impedance spectroscopy. The hydrophobic surfaces were self-assembled monolayers of 2-mereapto-3-n-octylthiophene (MOT) on gold. One characteristic of the MOT monolayer is its permeability to organic molecules in aqueous solution, thus providing a more energetically favorable hydrophobic surface for the addition of phospholipid vesicles. The kinetics of the lipid monolayer formation were followed by measuring the time-dependent interfacial capacitance. Unusual values of thickness and capacitance of the MOT/ DDPC bilayers were observed. An interdigitating conformation of the bilayer structure was proposed to interpret the experimental results, The horseradish peroxidase reconstituted into the bilayer demonstrated the expected protein activity, showing practical use in research and in biosensor application.