986 resultados para N-N split interstitials
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background. Split liver transplantation (SLT) increases organ supply for hepatic transplantation. Long-term patient survival and complication rates seem to be equivalent between orthotopic liver transplantation (OLT) and SLT. There are controversies among transplant physicians due to an ethical dilemma between benefiting individual needs or those of society. Barshes and Goss (Am J Transplant 5:2047, 2005) demonstrated that the majority of adult liver transplant candidates are favorable to SLT. The aim of our study was to evaluate the opinions of patients at a Brazilian university hospital regarding SLT.Materials and Methods. A questionnaire with 14 questions was applied to 50 patients included in a hepatic transplant waiting list regarding SLT.Results. The overall attitudes of 66% of the participants were classified as utilitarian, 31% were classified as self-preserving, and 3% were undecided. Ninety-one percent of patients would be willing to share even if their expected survival after SLT was shorter than that with OLT. For 77% of patients, children must have priority over adults. However, 83% were unaware of the donors for pediatric transplantations.Conclusions. SLT is a consistent solution for organ demand despite controversies among transplant physicians. The present study demonstrated that most patients were favorable to SLT. In conclusion, attitudes toward graft sharing are not barriers to SLT.
Resumo:
This study verified the resistance to displacement of six miniplate fixation methods after sagittal split osteotomy (SSO). SSO was performed in 30 polyurethane synthetic mandible replicas. The distal segments were advanced (4 mm) and specimens were grouped according to the fixation method: four-hole standard miniplate; four-hole locking miniplate; six-hole standard miniplate; six-hole locking miniplate; six-hole standard sagittal miniplate; six-hole locking sagittal miniplate. Biomechanical evaluation was performed by applying compression loads to three points on the second molar region, using an Instron universal testing machine until a 3 mm displacement of the segments occurred. Compression loads able to produce 3 mm displacement were recorded in kN and subjected to analysis of variance (P < 0.01) and Tukey's tests for comparison between groups (P < 0.05). The locking sagittal miniplate showed higher resistance to displacement than the regular four- and six-hole locking and standard miniplates. No significant differences were observed between the locking sagittal miniplate and the regular sagittal or the four-hole locking miniplates. Two of the three groups with the best results had locking plate fixation methods. Fixation of SSO with a single miniplate is better accomplished using six-hole locking sagittal miniplates, six-hole standard sagittal miniplates, or four-hole locking miniplates; these methods are more resistant to displacement.
Resumo:
Purpose: The aim of this in vitro study was to assess the biomechanical stability of 9 different osteosynthesis methods after sagittal split ramus osteotomy by simulating the masticatory forces and using a 3-point biomechanical test method.Materials and Methods: Forty-five polyurethane hemimandibles with bone-like consistency were randomly assigned to 9 groups (n = 5) and subjected to sagittal split ramus osteotomy. After 4-mm advancement of the distal segment, the bone segments were fixed by different osteosynthesis methods using 2.0-mm miniplate/screw systems: group A, one 4-hole conventional straight miniplate; group B, one 4-hole locking straight miniplate; group C, one 4-hole conventional miniplate and one bicortical screw; group D, one 4-hole locking miniplate and 1 bicortical screw; group E, one 6-hole conventional straight miniplate; group F, one 6-hole locking straight miniplate; group (3: two 4-hole conventional straight miniplates; group H. two 4-hole locking straight miniplates; and group 1, 3 bicortical screws in an inverted-L. pattern. All models were mounted on a base especially constructed for this purpose. Using a 3-point biomechanical test model, the hemimandibles were loaded in compressive strength in an Instron machine (Norwood, MA) until a 3-mm displacement occurred between segments vertically or horizontally. Data were analyzed by analysis of variance and Tukey test (alpha = 1%).Results: The multiparametric comparison of the groups showed a statistically significant difference (P<.01) between groups that used 2 miniplates (groups G and H), 1 miniplate and 1 bicortical screw (groups C and D), and only bicortical screws (group D compared with groups that used only 1 miniplate with 2 screws per segment (groups A and B) and 3 screws per segment (groups E and F).Conclusion: The placement of 2.0-mm-diameter bicortical screws in the retromolar region, associated or not with conventional and locking miniplates with monocortical screws, promoted a better stabilization of bone segments. Locking miniplates presented a better performance in bone fixation in all groups. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 68:724-730, 2010
Resumo:
Purpose: Numerous "in vitro" investigations have been conducted to evaluate the role of screw size and pattern in determining optimal resistance to deformation, often these have been controversial. The aim of this study was to evaluate the effect of screw size and insertion technique on the stability of sagittal split osteotomies.Materials and methods: This study used twenty polyurethane replicas of human hemimandibles with a prefabricated sagittal split ramus osteotomy (SSRO). The hemimandibles were stabilized with 1.5 mm and 2.0 mm titanium screws inserted in an inverted L configuration. All specimens were tested to determine the strength and stability of the fixation.Results: In all cases there was failure of the synthetic bone before there was any evidence of screw failure. There were no significant differences in the load necessary to make the construct fail between the 1.5 or 2.0 mm screw sizes.Conclusion: There was no statistically significant difference between the strengths achieved with screws of 1.5 and 2.0 mm diameters for fixation of SSRO performed in synthetic mandibles. There was no fracture of the 1.5 mm or 2.0 mm diameter screws in any of the tests. 1.5 mm diameter screws in an inverted L pattern have as much stability and mechanical resistance as a 2.0 mm screw, may be safely used for this procedure. (C) 2010 European Association for Cranio-Maxillo-Facial Surgery.
Resumo:
The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely habitat split- defined as human- induced disconnection between habitats used by different life history stages of a species- which forces forest- associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development ( the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simple and inexpensive way to fabricate arrays of gold microelectrodes is proposed. Integrated circuit chips are sawed through their middle, normal to the longest axis, leading to destruction of the silicon circuit and rupture of the gold wires that interconnect it with the external terminals. Polishing the resulting rough surface converts the tips of the wires embedded in the chip halves into arrays of gold microdisks of about 25 mu m diameter. The number of active microelectrodes (MEs), of an array depends on the number of pins in the chip, n, being typically (n/2)-4. These MEs can be used individually or externally interconnected in any combination. X-ray images of the chips and micrographs of the resulting surface of the polished arrays have revealed variable distances between neighbor MEs, which are, however, larger than 10 times the radius of the disks. This feature of the MEs prevents diffusional cross-talk between electrodes. The use of these microdisk electrodes for analytical purposes exhibits sigmoidal voltammograms, and chronoamperometric experiments confirm the nonlinear i vs. t(1/2) plots, typical for processes where radial diffusion prevails. Satisfactory uniformity was observed for the response of each electrode of an array, indicating similarity of geometry and disk areas. The potentialities of these MEs were demonstrated by the determination of cadmium at ppb levels using square wave voltammetry with preconcentration. Due to the relative ease with which these MEs can be manufactured and their good performance in (chemical) analysis, wide applications in electrochemistry and electroanalysis is envisioned.
Resumo:
A finite element analysis was carried out to study the role of prefabricated threaded split shaft post (Flexi-Post) on dentinal stress in pulpless tooth. Three dimensional plane strain model of mesio-distal section of a human maxillary central incisor without restoration was analysed with the MSC/NASTRAN (MacNeal/ Schwendler) general purpose finite analysis program was executed on a microcomputer. The model as discretized into 48.954 axisymmetric finite elements defined by 10.355 nodes. Each element was assigned unique elastic properties to represent the materials modeled. Homogeneity, isotropy and linear elasticity were assume for all material. A simulation of static load of 100N was applied to the incisal edge of the post; vertical. Maximal principal stresses and von Mises equivalent stress were calculated. Using the element analysis model employed in this study, the following can be concluded concerning threaded split shaft post (Flexi-Post): Maximum principal stresses in dentin were located at cervical place and at the post apex. The apical threads of the post not redirecting stresses away from the root.
Resumo:
A 160 mm bore, 7 T split-pair magnet was constructed and tested aiming to mineral processing through HGMS (high gradient magnetic separation) or HCMS (helical channel magnetic separation.) This work describes the design and test results of the pair of coils operating under current in parallel mode. In the case of antiparallel current mode large repulsive force between coils is generated and a strong magnetic field gradient outside the magnet is created. A continuous magnetic separation system made with a helical channel magnetic separator for application in TiO2 processing is analysed.
Resumo:
The presence of interstitial elements in metals cause strong changes in their physical, chemical or mechanical properties. These interstitial impurities interact with the metallic matrix atoms by a relaxation process known as stress induced ordering. Relaxation processes give rise to a peak in the internal friction spectrum, known as Snock effect. The presence of substitutional solutes has a strong influence on Snoek effect, particularly if the substitutional solute element is the one, which interacts with the interstitial element. Anelastic spectroscopy measurements provide information of the behavior of these impurities in the metallic matrix. In this paper, polycrystalline samples of Nb-4.7 at.%Ta alloy have been analyzed in the as-received condition. Measurements of anelastic spectroscopy were carried out using an inverted torsion pendulum, operating with frequency of 2.0-30.0 Hz and in a temperature range between 300 and 700 K. It was observed the presence of a relaxation structure that have been attributed to stress induced ordering due to interstitial atoms around atoms of the metallic matrix. The relaxation structure have been decomposed in its constituent peaks, what it allowed to identify the following relaxation processes: Ta-O, Nb-O and Nb-N. (c) 2005 Elsevier B.V. All rights reserved.