947 resultados para Mutual Impedance
Resumo:
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.
Resumo:
In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration
Resumo:
We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration
Resumo:
A theoretical model for the noise properties of n+nn+ diodes in the drift-diffusion framework is presented. In contrast with previous approaches, our model incorporates both the drift and diffusive parts of the current under inhomogeneous and hot-carrier conditions. Closed analytical expressions describing the transport and noise characteristics of submicrometer n+nn+ diodes, in which the diode base (n part) and the contacts (n+ parts) are coupled in a self-consistent way, are obtained
Resumo:
The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.
Resumo:
The purpose of this thesis is to examine the performance of Finnish equity funds and their market timing ability. Fund performance is evaluated by using annual returns and various risk-adjusted measures, including Sharpe ratio, DDSR, SKASR, Treynor ratio and Jensen’s alpha, whereas portfolio manager’s timing ability is examined with Treynor-Mazuy model and Henriksson-Merton model. The data is collected from the Finnish fund market during the sample period from January 1997 to February 2010. Results show that Finnish equity funds have been able to outperform the market return on a risk-adjusted basis, but these results are influenced heavily by the exceptionally good performance during the IT-bubble. Market timing models show that fund managers have been, to some degree, able to time the market but not a single fund have been able to possess security selection ability and market timing ability simultaneously.
Resumo:
A narrow review on mutual fund performance evaluation methods.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
The objectives of the present study were to describe and compare the body composition variables determined by bioelectrical impedance (BIA) and the deuterium dilution method (DDM), to identify possible correlations and agreement between the two methods, and to construct a linear regression model including anthropometric measures. Obese adolescents were evaluated by anthropometric measures, and body composition was assessed by BIA and DDM. Forty obese adolescents were included in the study. Comparison of the mean values for the following variables: fat body mass (FM; kg), fat-free mass (FFM; kg), and total body water (TBW; %) determined by DDM and by BIA revealed significant differences. BIA overestimated FFM and TBW and underestimated FM. When compared with data provided by DDM, the BIA data presented a significant correlation with FFM (r = 0.89; P < 0.001), FM (r = 0.93; P < 0.001) and TBW (r = 0.62; P < 0.001). The Bland-Altman plot showed no agreement for FFM, FM or TBW between data provided by BIA and DDM. The linear regression models proposed in our study with respect to FFM, FM, and TBW were well adjusted. FFM obtained by DDM = 0.842 x FFM obtained by BIA. FM obtained by DDM = 0.855 x FM obtained by BIA + 0.152 x weight (kg). TBW obtained by DDM = 0.813 x TBW obtained by BIA. The body composition results of obese adolescents determined by DDM can be predicted by using the measures provided by BIA through a regression equation.
Resumo:
Malnutrition constitutes a major public health concern worldwide and serves as an indicator of hospitalized patients’ prognosis. Although various methods with which to conduct nutritional assessments exist, large hospitals seldom employ them to diagnose malnutrition. The aim of this study was to understand the prevalence of child malnutrition at the University Hospital of the Ribeirão Preto Medical School, University of São, Brazil. A cross-sectional descriptive study was conducted to compare the nutritional status of 292 hospitalized children with that of a healthy control group (n=234). Information regarding patients’ weight, height, and bioelectrical impedance (i.e., bioelectrical impedance vector analysis) was obtained, and the phase angle was calculated. Using the World Health Organization (WHO) criteria, 35.27% of the patients presented with malnutrition; specifically, 16.10% had undernutrition and 19.17% were overweight. Classification according to the bioelectrical impedance results of nutritional status was more sensitive than the WHO criteria: of the 55.45% of patients with malnutrition, 51.25% exhibited undernutrition and 4.20% were overweight. After applying the WHO criteria in the unpaired control group (n=234), we observed that 100.00% of the subjects were eutrophic; however, 23.34% of the controls were malnourished according to impedance analysis. The phase angle was significantly lower in the hospitalized group than in the control group (P<0.05). Therefore, this study suggests that a protocol to obtain patients’ weight and height must be followed, and bioimpedance data must be examined upon hospital admission of all children.