906 resultados para Monocyte subsets
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of indomethacin (Indo), a cyclo-oxygenase inhibitor, on the monocyte-mediated killing of a low- (Pb265) and a high- (Pb18) virulence strain of Paracoccidioides brasiliensis was examined. The Pb18 strain was not killed by either non-activated or interferon-gamma (IFN-gamma) -activated human monocytes but these cells did show fungicidal activity if pretreated with Indo. In contrast with IFN-gamma, tumour necrosis factor-alpha (TNF-alpha) was very effective at stimulating the fungicidal activity of monocytes. While the low-virulence strain, Pb265, could not be killed by monocytes, cells preincubated with IFN-gamma demonstrated fungicidal activity. The killing of this strain was also induced by pretreatment of monocytes with Indo. The results suggest a negative role for prostaglandins, which are synthesized via the cyclo-oxygenase pathway, in the regulation of monocyte-mediated killing of virulent and avirulent strains of P. brasiliensis and that TNF-alpha generation during the fungus-monocyte interaction is more important in the killing of Pb265 than Pb18.
Resumo:
Alveolar macrophages (AMs) are important cells in the resolution of the inflammatory process and they come into direct contact with inhaled pollutants. Hydroquinone (HQ) is an environmental pollutant and a component of cigarette smoke that causes immunosuppressive effects. In the present work, we showed that mice exposed to low levels of aerosolized HQ (25 ppm; 1 h/day/5 days) presented impaired mononuclear cell migration to the lipopolysaccharide (LPS)-inflamed lung. This may have been due to reduced monocyte chemoattractant protein-1 (MCP-1) secretion into bronchoalveolar lavage fluid (BALF), and it was not related to alterations to mononuclear cell mobilization into the blood or adhesion molecules expression on mononuclear cell membranes. Corroborating the actions of HQ on MCP-1 secretion, reduced MCP-1 concentrations were also found in the supernatant of ex vivo AM and tracheal tissue collected from HQ-exposed mice. A direct action of HQ on MCP-1 secretion, resulting from impaired gene synthesis, was verified by in vitro incubation of naive AMs or tracheal tissue with HQ. The role of reduced levels of MCP-1 in the BALF on monocyte migration was analysed in the human monocytic lineage THP-1 in in vitro chemotaxis assays, which showed that the reduced concentrations of MCP-1 found in the BALF or cell supernatants from HQ-exposed mice impaired cell migration. Considering the fact that MCP-1 presents a broad spectrum of actions on pathophysiological conditions and that resident mononuclear cells are involved in lung tissue homeostasis and in immune host defence, the mechanism of HQ toxicity presented herein might be relevant to the genesis of infectious lung diseases in smokers and in inhabitants of polluted areas. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective. Monocyte chemotactic protein (MCP-1), involved in the pathogenesis of lupus nephritis (LN), has recently been indicated as a new biomarker of kidney activity in systemic lupus erythematosus (SLE). Our aim was to assess urinary MCP-1 (uMCP-1) as a biomarker of renal activity in patients with SLE and to compare it to other disease activity markers, using the ELISA. Methods. Seventy-five female Brazilian patients with SLE and a control group participated in our study. Patients with SLE were distributed among 3 groups according to kidney involvement and classified according to disease activity based on clinical and laboratory measures such as urinary sediment, proteinuria, kidney function, C3, C4, anti-dsDNA, disease activity index, and renal SLE disease activity index. The serum and uMCP-1 concentrations were measured by sandwich ELISA. Results. In the A-LN group (active lupus nephritis: SLE with kidney involvement), the concentration of uMCP-1 was significantly higher than in other groups. A cutoff point was established using the results of the control group to apply this test in the detection of LN. A-LN had a higher frequency of positive results for uMCP-1 in comparison to the other groups (p < 0.001). To detect disease activity in patients with LN, a new cutoff was determined based on the results of patients with SLE with kidney involvement. Setting specificity at 90%, the sensitivity of the test was 50%. Conclusion. The high specificity makes uMCP-1 a useful test as a predictor of kidney activity in SLE, especially when associated to other measures used in clinical practice. (First Release Sept 1 2012; J Rheumatol 2012;39:1948-54; doi :10.3899/jrheum.110201)
Resumo:
Sanches B.G.S., Souza F.N., Azedo M.R., Batista C.F., Bertagnon H.G., Blagitz M.G. & Della Libera A.M.M.P. 2012. [Enhanced phagocytosis of Corynebacterium pseudotuberculosis by monocyte-macrophage cells from goats naturally infected with caprine arthritis encephalitis virus.] Fagocitose intensificada de Corynebacterium pseudotuberculosis por celulas da serie monocito-macrofago de caprinos naturalmente infectados pelo virus da artrite encefalite. Pesquisa Veterinaria Brasileira 32(12):1225-1229. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitaria, Sao Paulo, SP 05508-270, Brazil. E-mail: camilafb@usp.br Caprine arthritis encephalitis (CAE) and caseous lymphadenitis (CL) have high incidence and transmissibility in small ruminants. Since both virus have tropism for macrophages and monocytes and affect the innate immune response, it is believed that CAE can predispose the animal to infection by Corynebacteruim pseudotuberculosis, the etiological agent of CL. To confirm this hypothesis, we evaluated phagocytosis from the monocyte-macrophage cells from 30 Saanen goats. Goats were uniformly divided in two groups according to results of agar gel immunodiffusion test for CAE virus (CAEV). Peripheral blood mononuclear cells were isolated by density gradient centrifugation and the monocyte-macrophage cells were isolated from the mononuclear cells by their adhesion properties in plaques. Afterwards, phagocytosis of C. psudotuberculosis was performed for two hours at 37 degrees C, 5% of CO2, and assessed by microscopic visualization. There was no difference in the percentage of monocyte-macrophage cells that phagocytozed C. bovis between groups (P = 0.41). However, when phagocytosis rates were classified according to the number of C. pseudotuberculosis phagocyted, the percentage of monocyte-macrophage cells that internalized more than 12 bacteria were higher in serologically CAEV positive animals compared to the serologically negative ones (P < 0.001). Furthermore, a positive and significant correlation (r = 0.488; P = 0.006) between the percentage of monocyte-macrophage cells that internalized more than 12 bacteria and the percentage of monocyte that were carrying out phagocytosis was also encountered in serologically CAEV positive goats, however the same were not observed in serologically negative ones. These results demonstrated an alteration in the intensity of C. pseudotuberculosis phagocytosis by monocytes-macrophages from goats infected by CAEV. Thus, these results indicated that goats infected with CAEV may be more susceptible to CL.
Resumo:
The aim of the present trial was to determine the frequencies and absolute number of B and T lymphocytes subpopulations in bovine leukemia virus (BLV)-infected dairy cows with distinct lymphocyte profile known as non-leukemic (AL) and persistent lymphocytosis (PL). Thus, 15 animals were selected and divided uniformly in three groups (negative, AL, PL). The BLV infection was detected by agar gel immunodiffusion and enzyme-linked immunosorbent-assay. The lymphocytes subsets were evaluated using monoclonal antibodies by flow cytometry. The results of the present study pointed out to an increase in B lymphocytes, and also an augment in CD5(+) and CD11b(+) cells in animals showing PL. Consequently, it can be observed a decrease in the percentage of T cells subsets in these animals. Conversely, no significant alterations in the absolute number of the T lymphocytes, T CD4(+) cells and T CD8(+) lymphocytes were found in BLV-infected dairy cows with PL. Therefore, the correlation between the absolute numbers of B- and T cell subsets in the peripheral blood applied to each group showed a significant and positive strong correlation between numbers of B cells and T cells or T CD8(+) cells in the PL animals, although the same cannot be predicted for T CD4(+) lymphocytes. No such correlation was encountered for the AL and negative-control animals.
Resumo:
DCs orchestrate immune responses contributing to the pattern of response developed. In cancer, DCs may play a dysfunctional role in the induction of CD4(+)CD25(+) Foxp3(+) Tregs, contributing to immune evasion. We show here that Mo-DCs from breast cancer patients show an altered phenotype and induce preferentially Tregs, a phenomenon that occurred regardless of DC maturation stimulus (sCD40L, cytokine cocktail, TNF-alpha, and LPS). The Mo-DCs of patients induced low proliferation of allogeneic CD3(+)CD25(neg)Foxp3(neg) cells, which after becoming CD25(+), suppressed mitogen-stimulated T cells. Contrastingly, Mo-DCs from healthy donors induced a stronger proliferative response, a low frequency of CD4(+)CD25(+)Foxp3(+) with no suppressive activity. Furthermore, healthy Mo-DCs induced higher levels of IFN-gamma, whereas the Mo-DCs of patients induced higher levels of bioactive TGF-beta 1 and IL-10 in cocultures with allogeneic T cells. Interestingly, TGF-beta 1 blocking with mAb in cocultures was not enough to completely revert the Mo-DCs of patients' bias toward Treg induction. Altogether, these findings should be considered in immunotherapeutic approaches for cancer based on Mo-DCs. J. Leukoc. Biol. 92: 673-682; 2012.
Resumo:
NLRP3-inflammasome activation was evaluated in monocyte-derived dendritic cells (DC) obtained through IL-4 (IL4-DC) or IFN-α (IFN-DC) protocols and pulsed with chemically inactivated HIV-1. Inflammasome' genes expression and IL-1β secretion were compared in DC isolated from 15 healthy subjects (HC) and 10 HIV-1 infected individuals (HIV+). FINDINGS: Whether HIV was able to increased NLRP3-inflammasome genes expression and IL-1β secretion in IL4-DC from HC, the induction of inflammasome appeared significantly reduced in IFN-DC from HC, suggesting a different responsive state of IFN-DC compared to IL4-DC. No inflammasome activation was observed in IL4-DC as well as in IFN-DC derived from HIV + subjects, confirming previous findings on "unresponsive" state of DC derived from HIV + possibly due to chronic inflammatory state of these individuals. CONCLUSIONS: Our results showed that IFN-α differently modulates inflammasome expression during monocytes-DC in vitro differentiation. These findings could be of interest considering the on-going research about DC manipulation and therapeutic strategies for HIV + involving DC-based immune-vaccines.
Resumo:
In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn
Resumo:
Functional disruption of dendritic cells (DC) is an important strategy for viral pathogens to evade host defences. In this context, porcine circovirus type 2 (PCV2), a single-stranded DNA virus, impairs plasmacytoid DC (pDC) and conventional DC activation by certain viruses or Toll-like receptor (TLR) ligands. This inhibitory capacity is associated with the viral DNA, but the impairment does not affect all signalling cascades; TLR7 ligation by small chemical molecules will still induce interleukin-6 (IL-6) and tumour necrosis factor-α secretion, but not interferon-α or IL-12. In this study, the molecular mechanisms by which silencing occurs were investigated. PP2, a potent inhibitor of the Lyn and Hck kinases, produced a similar profile to the PCV2 DNA interference with cytokine secretion by pDC, efficiently inhibiting cell activation induced through TLR9, but not TLR7, ligation. Confocal microscopy and cytometry analysis strongly suggested that PCV2 DNA impairs actin polymerization and endocytosis in pDC and monocyte-derived DC, respectively. Altogether, this study delineates for the first time particular molecular mechanisms involved in PCV2 interference with DC danger recognition, which may be responsible for the virus-induced immunosuppression observed in infected pigs.
Resumo:
Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.
Resumo:
Intestinal mononuclear phagocytes (iMNP) are critically involved in mucosal immunity and tissue homeostasis. Two major non-overlapping populations of iMNP have been identified in mice. CD103(+) iMNP represent a migratory population capable of inducing tolerogenic responses, whereas CX3CR1(+) iMNP are resident cells with disease-promoting potential. CX3CR1(+) iMNP can further be subdivided based on differential expression of CX3CR1. Using CX3CR1(GFP/+) ×RAG2(-/-) mice, we demonstrate that CX3CR1(hi) and CX3CR1(lo) iMNP clearly differ with respect to their morphological and functional properties. Compared with CX3CR1(hi) iMNP, CX3CR1(lo) iMNP are polarised towards pro-inflammatory responses already under homeostatic conditions. During a CD4(+) T-cell-induced colitis, CX3CR1(lo) cells accumulate in the inflamed mucosa and upregulate the expression of pro-inflammatory cytokines and triggering receptor expressed on myeloid cells-1 (TREM-1). In contrast, CX3CR1(hi) iMNP retain their non-inflammatory profile even during intestinal inflammation. These findings identify two functionally distinct iMNP subsets based on differential expression of CX3CR1 and indicate an unanticipated stability of iMNP.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and the metabolic syndrome. It encompasses a clinico-pathologic spectrum of conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). The latter develops upon pro-inflammatory cell infiltration and is widely considered as the first relevant pathophysiological step in NAFLD-progression. The chemokine monocyte chemoattractant protein 1 (MCP-1) plays an important role in the progression of hepatic inflammation and fibrosis, and both increased hepatic expression and circulating serum levels have been described in NASH. Here, we aimed to investigate MCP-1 expression in simple hepatic steatosis. Upon feeding a high-fat diet mice developed hepatic steatosis in the absence of significant hepatic inflammation, but elevated hepatic MCP-1 expression compared to control mice fed a standard chow. Interestingly, high-fat diet fed mice had significantly higher MCP-1 serum levels, and MCP-1 mRNA expression was significantly increased in visceral adipose tissue. Furthermore, MCP-1 serum levels were also elevated in patients with ultrasound-diagnosed NAFLD and correlated with the body-mass index and fasting glucose. In conclusion, our data indicate both the liver and adipose tissue as cellular sources of elevated circulating MCP-1 levels already in the early phase of hepatic steatosis. Since MCP-1 derived from visceral adipose tissue reaches the liver via portal circulation at high concentrations it may significantly contribute to the progression of simple steatosis to NASH.