930 resultados para Molecules - Models - Computer simulation
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Results of numerical experiments are introduced. Experiments were carried out by means of computer simulation on olfactory bulb for the purpose of checking of thinking mechanisms conceptual model, introduced in [2]. Key role of quasisymbol neurons in processes of pattern identification, existence of mental view, functions of cyclic connections between symbol and quasisymbol neurons as short-term memory, important role of synaptic plasticity in learning processes are confirmed numerically. Correctness of fundamental ideas put in base of conceptual model is confirmed on olfactory bulb at quantitative level.
Resumo:
This Licentiate Thesis is devoted to the presentation and discussion of some new contributions in applied mathematics directed towards scientific computing in sports engineering. It considers inverse problems of biomechanical simulations with rigid body musculoskeletal systems especially in cross-country skiing. This is a contrast to the main research on cross-country skiing biomechanics, which is based mainly on experimental testing alone. The thesis consists of an introduction and five papers. The introduction motivates the context of the papers and puts them into a more general framework. Two papers (D and E) consider studies of real questions in cross-country skiing, which are modelled and simulated. The results give some interesting indications, concerning these challenging questions, which can be used as a basis for further research. However, the measurements are not accurate enough to give the final answers. Paper C is a simulation study which is more extensive than paper D and E, and is compared to electromyography measurements in the literature. Validation in biomechanical simulations is difficult and reducing mathematical errors is one way of reaching closer to more realistic results. Paper A examines well-posedness for forward dynamics with full muscle dynamics. Moreover, paper B is a technical report which describes the problem formulation and mathematical models and simulation from paper A in more detail. Our new modelling together with the simulations enable new possibilities. This is similar to simulations of applications in other engineering fields, and need in the same way be handled with care in order to achieve reliable results. The results in this thesis indicate that it can be very useful to use mathematical modelling and numerical simulations when describing cross-country skiing biomechanics. Hence, this thesis contributes to the possibility of beginning to use and develop such modelling and simulation techniques also in this context.
Resumo:
Abstract not available
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.
Resumo:
This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.
Resumo:
DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.
Resumo:
The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.
Resumo:
This paper presents an interactive simulation environment for distance protection, developed with ATP and foreign models based on ANSI C. Files in COMTRADE format are possible to generate after ATP simulation. These files can be used to calibrate real relays. Also, the performance of relay algorithms with real oscillography events is possible to assess by using the ATP option for POSTPROCESS PLOT FILE (PPF). The main purpose of the work is to develop a tool to allow the analysis of diverse fault cases and to perform coordination studies, as well as, to allow the analysis of the relay's performance in the face of a real event. © 2011 IEEE.
Resumo:
The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.