955 resultados para Molar - Average distances
Resumo:
In a dense multi-hop network of mobile nodes capable of applying adaptive power control, we consider the problem of finding the optimal hop distance that maximizes a certain throughput measure in bit-metres/sec, subject to average network power constraints. The mobility of nodes is restricted to a circular periphery area centered at the nominal location of nodes. We incorporate only randomly varying path-loss characteristics of channel gain due to the random motion of nodes, excluding any multi-path fading or shadowing effects. Computation of the throughput metric in such a scenario leads us to compute the probability density function of random distance between points in two circles. Using numerical analysis we discover that choosing the nearest node as next hop is not always optimal. Optimal throughput performance is also attained at non-trivial hop distances depending on the available average network power.
Resumo:
The reversible e.m.f. of galvanic cells: stainlesssteel,Ir,Pb+PbO|CaO+ZrO2|Ag+Pb+PbO,Ir,stainlesssteel,I and Pt,Ni+NiO|CaO+ZrO2|O(Pb+Ag),Cermet,Pt,II incorporating solid oxide electrolytes were measured as a function of alloy composition. In lead-rich alloys, the temperature dependence of the e.m.f. of cell I was also investigated. Since the solubility of oxygen in the alloy is small, the relative partial molar properties of lead in the binary Ag + Pb system can be calculated from the e.m.f. of this cell. The Gibbs free energies obtained in this study are combined with selected calorimetric data to provide a complete thermodynamic discription of liquid Ag + Pb Alloys. The activity coefficient of oxygen in the whole range of Ag + Pb alloys at 1273 K have been obtained from the e.m.f. of cell II; and these are found to deviate positively from Alcock and Richardson's quasichemical equation when the average co-ordination number of all the atoms is assigned a value of 2.
Resumo:
The standard molar Gibbs energies of formation of YbPt3 and LuPt3 intermetallic compounds have been measured in the temperature range 880 K to 1100 K using the solid-state cells:View the MathML source and View the MathML source The trifluoride of Yb is not stable in equilibrium with Yb or YbPt3. The results can be expressed by the equations: View the MathML source View the MathML source The standard molar Gibbs energy of formation of LuPt3 is −41.1 kJ · mol−1 more negative than that for YbPt3 at 1000 K. Ytterbium is divalent in the pure metal and trivalent in the intermetallic YbPt3. The energy required for the promotion of divalent Yb to the trivalent state is responsible for the less negative ΔfGmo of YbPt3. The enthalpies of formation of the two intermetallics are in reasonable agreement with Miedema's model. Because of the extraordinary stability of these compounds it is possible to reduce oxides of Yb and Lu with hydrogen in the presence of platinum at View the MathML source. The equilibrium chemical potential of oxygen corresponding to the reduction of Yb2O3 and Lu2O3 by hydrogen in the presence of platinum is presented in the form of an Ellingham diagram.
Resumo:
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.
Resumo:
Epitaxial films of La4BaCu5O13+δ and La4BaCu4NiO13+δ oxides are grown with a-b plane parallel to (100) of LaAlO3 and SrTiO3 by pulsed-laser deposition. The conductivity measurements performed along the c direction using LaNiO3 as the electrode show metallic behavior whereas they show semiconducting behavior in the a-b plane. Anisotropic transport property of these thin films is explained on the basis of nearly 180° connected Cu–O–Cu chains with an average Cu–O distance of 1.94 Å along the c direction and nearly 180° and 90° connected Cu–O–Cu chains in the a-b plane with short and long Cu–O distances ranging from 1.863 to 2.303 Å. YBa2Cu3O7−x has been grown along (00l) on La4BaCu5O13+δ and shows a Tc of 88 K.
Resumo:
The problem of developing L2-stability criteria for feedback systems with a single time-varying gain, which impose average variation constraints on the gain is treated. A unified approach is presented which facilitates the development of such average variation criteria for both linear and nonlinear systems. The stability criteria derived here are shown to be more general than the existing results.
Resumo:
Four new neutral copper-azido polymers [Cu(4)(N(3))(8)(Me-hmpz)(2)](n) (1), [Cu(4)(N(3))(8)(men)(2)](n) (2), [Cu(5)(N(3))(10)(N,N-dmen)(2)](n) (3) and [Cu(5)(N(3))(10)(N,N'-dmen)(5)](n) (4) [Me-hmpz = 1-methylhomopiperazine; men = N-methylethylenediamine; N, N-dmen = N, N-dimethylethylenediamine and N, N'-dmen = N, N'-dimethylethylenediamine] have been synthesized by using various molar equivalents of the chelating diamine ligands with Cu(NO(3))(2)center dot 3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic asymmetric units of 1 and 2 are very similar, but the overall 1D structures were found to be quite different. Complex 3 with a different composition was found to be 2D in nature, while the 1D complex 4 with 1 : 1 metal to diamine ratio presented several new structural features. Cryomagnetic susceptibility measurements over a wide range of temperature were corroborated with density functional theory calculations (B3LYP functional) performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
The throughput-optimal discrete-rate adaptation policy, when nodes are subject to constraints on the average power and bit error rate, is governed by a power control parameter, for which a closed-form characterization has remained an open problem. The parameter is essential in determining the rate adaptation thresholds and the transmit rate and power at any time, and ensuring adherence to the power constraint. We derive novel insightful bounds and approximations that characterize the power control parameter and the throughput in closed-form. The results are comprehensive as they apply to the general class of Nakagami-m (m >= 1) fading channels, which includes Rayleigh fading, uncoded and coded modulation, and single and multi-node systems with selection. The results are appealing as they are provably tight in the asymptotic large average power regime, and are designed and verified to be accurate even for smaller average powers.
Resumo:
We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.
Resumo:
Wireless Sensor Networks (WSNs) have many application scenarios where external clock synchronisation may be required because a WSN may consist of components which are not connected to each other. In this paper, we first propose a novel weighted average-based internal clock synchronisation (WICS) protocol, which synchronises all the clocks of a WSN with the clock of a reference node periodically. Based on this protocol, we then propose our weighted average-based external clock synchronisation (WECS) protocol. We have analysed the proposed protocols for maximum synchronisation error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our above theoretical claim and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronisation accuracy. A prototype implementation of the WICS protocol using a few TelosB motes also validates the above conclusions.
Resumo:
Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.
Resumo:
We consider a discrete time system with packets arriving randomly at rate lambda per slot to a fading point-to-point link, for which the transmitter can control the number of packets served in a slot by varying the transmit power. We provide an asymptotic characterization of the minimum average delay of the packets, when average transmitter power is a small positive quantity V more than the minimum average power required for queue stability. We show that the minimum average delay will grow either as log (1/V) or 1/V when V down arrow 0, for certain sets of values of lambda. These sets are determined by the distribution of fading gain, the maximum number of packets which can be transmitted in a slot, and the assumed transmit power function, as a function of the fading gain and the number of packets transmitted. We identify a case where the above behaviour of the tradeoff differs from that obtained from a previously considered model, in which the random queue length process is assumed to evolve on the non-negative real line.
Resumo:
The optimal tradeoff between average service cost rate and average delay, is addressed for a M/M/1 queueing model with queue-length dependent service rates, chosen from a finite set. We provide an asymptotic characterization of the minimum average delay, when the average service cost rate is a small positive quantity V more than the minimum average service cost rate required for stability. We show that depending on the value of the arrival rate, the assumed service cost rate function, and the possible values of the service rates, the minimum average delay either a) increases only to a finite value, b) increases without bound as log(1/V), or c) increases without bound as 1/V, when V down arrow 0. We apply the analysis to a flow-level resource allocation model for a wireless downlink. We also investigate the asymptotic tradeoff for a sequence of policies which are obtained from an approximate fluid model for the M/M/1 queue.
Resumo:
In the underlay mode of cognitive radio, secondary users can transmit when the primary is transmitting, but under tight interference constraints, which limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which require less hardware and yet exploit spatial diversity, help improve the secondary system performance. In this paper, we develop the optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gains of the channels from secondary transmit antenna to primary receiver and secondary transmit antenna to secondary receive antenna. The optimal rule is different from the several ad hoc rules that have been proposed in the literature. We also propose a closed-form, tractable variant of the optimal rule and analyze its SEP. Several results are presented to compare the performance of the closed-form rule with the ad hoc rules, and interesting inter-relationships among them are brought out.