913 resultados para Model predictive control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to reconfiguring control systems in the event of major failures is advocated. The approach relies on the convergence of several technologies which are currently emerging: Constrained predictive control, High-fidelity modelling of complex systems, Fault detection and identification, and Model approximation and simplification. Much work is needed, both theoretical and algorithmic, to make this approach practical, but we believe that there is enough evidence, especially from existing industrial practice, for the scheme to be considered realistic. After outlining the problem and proposed solution, the paper briefly reviews constrained predictive control and object-oriented modelling, which are the essential ingredients for practical implementation. The prospects for automatic model simplification are also reviewed briefly. The paper emphasizes some emerging trends in industrial practice, especially as regards modelling and control of complex systems. Examples from process control and flight control are used to illustrate some of the ideas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New embedded predictive control applications call for more eficient ways of solving quadratic programs (QPs) in order to meet demanding real-time, power and cost requirements. A single precision QP-on-a-chip controller is proposed, implemented in afield-programmable gate array (FPGA) with an iterative linear solver at its core. A novel offline scaling procedure is introduced to aid the convergence of the reduced precision solver. The feasibility of the proposed approach is demonstrated with a real-time hardware-in-the-loop (HIL) experimental setup where an ML605 FPGA board controls a nonlinear model of a Boeing 747 aircraft running on a desktop PC through an Ethernet link. Simulations show that the quality of the closed-loop control and accuracy of individual solutions is competitive with a conventional double precision controller solving linear systems using a Riccati recursion. © 2012 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the notion of M-step robust fault tolerance for discrete-time systems where finite-time completion of a control manoeuvre is desired. It considers a scenario with two distinct objectives; a primary and secondary target are specified as sets to be reached in finite-time, whilst satisfying operating constraints on the states and inputs. The primary target is switched to the secondary target when a fault affects the system. As it is unknown when or if the fault will occur, the trajectory to the primary target is constrained to ensure reachability of the secondary target within M steps. A variable-horizon linear MPC formulation is developed to illustrate the concept. The formulation is then extended to provide robustness to bounded disturbances by use of tightened constraints. Simulations demonstrate the efficacy of the controller formulation on a double-integrator model. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a linear lightweight electric cylinder constructed using shape memory alloy (SMA) is proposed. Spring SMA is used as the actuator to control the position and force of the cylinder rod. The model predictive control algorithm is investigated to compensate SMA hysteresis phenomenon and control the cylinder. In the predictive algorithm, the future output of the cylinder is computed based on the cylinder model, and the control signal is computed to minimize the error and power criterion. The cylinder model parameters are estimated by an online identification algorithm. Experimental results show that the SMA cylinder is able to precisely control position and force by using the predictive control strategy though the hysteresis effect existing in the actuator. The performance of the proposed controller is compared with that of a conventional PID controller

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of key technologies in photovoltaic converter control, Maximum Power Point Tracking (MPPT) methods can keep the power conversion efficiency as high as nearly 99% under the uniform solar irradiance condition. However, these methods may fail when shading conditions occur and the power loss can over as much as 70% due to the multiple maxima in curve in shading conditions v.s. single maximum point in uniformly solar irradiance. In this paper, a Real Maximum Power Point Tracking (RMPPT) strategy under Partially Shaded Conditions (PSCs) is introduced to deal with this kind of problems. An optimization problem, based on a predictive model which will change adaptively with environment, is developed to tracking the global maxima and corresponding adaptive control strategy is presented. No additional circuits are required to obtain the environment uncertainties. Finally, simulations show the effectiveness of proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This talk addresses the problem of controlling a heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identifed by means of a multi-objective genetic algorithm [1]; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, with a special emphasis on a fast and accurate computation of the PMV indices [2]. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer [3] and winter [4] conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the SIMULINK implementation of a constrained predictive control algorithm based on quadratic programming and linear state space models, and its application to a laboratory-scale 3D crane system. The algorithm is compatible with Real Time. Windows Target and, in the case of the crane system, it can be executed with a sampling period of 0.01 s and a prediction horizon of up to 300 samples, using a linear state space model with 3 inputs, 5 outputs and 13 states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most commercially available predictive control packages, there is a separation between economic optimisation and predictive control, although both algorithms may be part of the same software system. This method is compared in this article with two alternative approaches where the economic objectives are directly included in the predictive control algorithm. Simulations are carried out using the Tennessee Eastman process model.

Relevância:

100.00% 100.00%

Publicador: