807 resultados para Mitochondrial fatty acid oxidation
Resumo:
The basidiospores of Pisolithus sp. contain large amounts of lipids, indicating provision for future germination in the host rhizosphere. However, the accumulation, composition, and mobilization of lipids during formation and germination of these spores are largely unknown. In this study, lipid storage and fatty acid composition during basidiosporogenesis were analyzed in fresh basidiocarps using bright-field microscopy and gas chromatography. Abundant lipid bodies are found in the hyphae, basidia, and basidiospores of fungal basidiocarps. This evidences a considerable C transport in the basidiocarp to meet the C demand during basidiospore formation. Fatty acid composition analysis revealed the presence of 24 compounds with chains of 9 to 18 C atoms, either saturated or insaturated, with one or two insaturations. The fatty acid composition and content varied according to the developmental stage of the peridioles. In free basidiospores, the predominant compounds were 16:0, 16:1w5c, 18:1w9c, and 18:2w6,9c/18:0ante, at concentrations of 76, 46, 192, and 51 µg g-1 dry matter, respectively. Our results indicate that oleic acid is the major constituent of lipid reserves in Pisolithus sp. basidiospores. Further studies are being conducted to determine the factors that induce lipid mobilization during spore germination.
Resumo:
Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.
Resumo:
Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.
Resumo:
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Resumo:
Despite data favouring a role of dietary fat in colonic carcinogenesis, no study has focused on tissue n3 and n6 fatty acid (FA) status in human colon adenoma-carcinoma sequence. Thus, FA profile was measured in plasma phospholipids of patients with colorectal cancer (n = 22), sporadic adenoma (n = 27), and normal colon (n = 12) (control group). Additionally, mucosal FAs were assessed in both diseased and normal mucosa of cancer (n = 15) and adenoma (n = 21) patients, and from normal mucosa of controls (n = 8). There were no differences in FA profile of both plasma phospholipids and normal mucosa, between adenoma and control patients. There were considerable differences, however, in FAs between diseased and paired normal mucosa of adenoma patients, with increases of linoleic (p = 0.02), dihomogammalinolenic (p = 0.014), and eicosapentaenoic (p = 0.012) acids, and decreases of alpha linolenic (p = 0.001) and arachidonic (p = 0.02) acids in diseased mucosa. A stepwise reduction of eicosapentaenoic acid concentrations in diseased mucosa from benign adenoma to the most advanced colon cancer was seen (p = 0.009). Cancer patients showed lower alpha linolenate (p = 0.002) and higher dihomogammalinolenate (p = 0.003) in diseased than in paired normal mucosa. In conclusion changes in tissue n3 and n6 FA status might participate in the early phases of the human colorectal carcinogenesis.
Resumo:
OBJECTIVE: Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability. METHODS AND RESULTS: We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency. CONCLUSIONS: Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.
Resumo:
This study was undertaken in the framework of a larger European project dealing with the characterization of fat co- and by-products from the food chain, available for feed uses. In this study, we compare the effects, on the fatty acid (FA) and tocol composition of chicken and rabbit tissues, of the addition to feeds of a palm fatty acid distillate, very low in trans fatty acids (TFA), and two levels of the corresponding hydrogenated by-product, containing intermediate and high levels of TFA. Thus, the experimental design included three treatments, formulated for each species, containing the three levels of TFA defined above. Obviously, due to the use of hydrogenated fats, the levels of saturated fatty acids (SFA) show clear differences between the three dietary treatments. The results show that diets high in TFA (76 g/kg fat) compared with those low in TFA (4.4 g/kg fat) led to a lower content of tocopherols and tocotrienols in tissues, although these differences were not always statistically significant, and show a different pattern for rabbit and chicken. The TFA content in meat, liver and plasma increased from low-to-high TFA feeds in both chicken and rabbit. However, the transfer ratios from feed were not proportional to the TFA levels in feeds, reflecting certain differences according to the animal species. Moreover, feeds containing fats higher in TFA induced significant changes in tissue SFA, monounsaturated fatty acids and polyunsaturated fatty acids composition, but different patterns can be described for chicken and rabbit and for each type of tissue.
Resumo:
The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.
Resumo:
PURPOSE OF REVIEW: New insight in mitochondrial physiology has highlighted the importance of mitochondrial dysfunction in the metabolic and neuroendocrine changes observed in patients presenting with chronic critical illness. This review highlights specifically the importance of carnitine status in this particular patient population and its impact on beta-oxidation and mitochondrial function. RECENT FINDINGS: The main function of carnitine is long chain fatty acid esterification and transport through the mitochondrial membrane. Carnitine depletion should be suspected in critically ill patients with risk factors such as prolonged continuous renal replacement therapy or chronic parenteral nutrition, and evidence of beta-oxidation impairments such as inappropriate hypertriglyceridemia or hyperlactatemia. When fatty acid oxidation is impaired, acyl-CoAs accumulate and deplete the CoA intramitochondrial pool, hence causing a generalized mitochondrial dysfunction and multiorgan failure, with clinical consequences such as muscle weakness, rhabdomyolysis, cardiomyopathy, arrhythmia or sudden death. In such situations, carnitine plasma levels should be measured along with a complete assessment of plasma amino acid, plasma acylcarnitines and urinary organic acid analysis. Supplementation should be initiated if below normal levels (20 μmol/l) of carnitine are observed. In the absence of current guidelines, we recommend an initial supplementation of 0.5-1 g/day. SUMMARY: Metabolic modifications associated with chronic critical illness are just being explored. Carnitine deficiency in critically ill patients is one aspect of these profound and complex changes associated with prolonged stay in ICU. It is readily measurable in the plasma and can easily be substituted if needed, although guidelines are currently missing.
Resumo:
Chronic inflammation and fatty acid deficiency, in particular in docosahexaenoic acid (DHA, C22:6-n3), occurring in cystic fibrosis patients, are two convincing arguments urging the use of polyunsaturated fatty acids (PUFA) omega-3 in this population. PUFA omega-3 oral dietary intake position in the cystic fibrosis treatment is however not clear despite many years of clinical research. This review article sets out the reasons that conduct nutritionists to try this approach and reviews the results published until nowadays.
Resumo:
The effects of diet on Longissimus muscle fatty acid composition was determined using 24 crossbred heifers of Simmental vs. Nelore and Limousin vs. Nelore. The experimental diets were: 1) corn and yeast (CY); 2) corn, cottonseed meal + meat and bones meal (CMB); 3) cassava hull and yeast (CHY); 4) cassava hull, cottonseed meal + meat and bones meal (CHMB). Feeding CHMB diets resulted in lower lipid and higher cholesterol contents (P<0.05) for both crosses. Most of the identified fatty acids were monounsaturated, and the highest percentage was found to oleic acid (C18:1w9), with values ranging from 32.54 to 46.42%. Among the saturated fatty acids the palmitic acid (C16:0) showed the highest percentage, with its contents ranging between 19.40 and 32.44%. The highest polyunsaturated/saturated fatty acid ratio was of 0.30, and the lowest was of 0.08. Feeding CY diets resulted in lower cholesterol and higher polyunsaturated fatty acid contents of the Longissimus muscle.
Resumo:
Rapeseed (Brassica napus) oils differing in cultivar, sites of growth, and harvest year were characterized by fatty acid concentrations and carbon, hydrogen, and oxygen stable isotope analyses of bulk oils (delta(13)C(bulk), delta(2)H(bulk), delta(18)O(bulk) values) and individual fatty acids (delta(13)C(FA)). The delta(13)C(bulk), delta(2)H(bulk), and delta(18)O(bulk) values were determined by continuous flow combustion and high-temperature conversion elemental analyzer isotope ratio mass spectrometry (EA/IRMS, TC-EA/IRMS). The delta(13)C(FA) values were determined using gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS). For comparison, other C(3) vegetable oils rich in linolenic acid (flax and false flax oils) and rich in linoleic acid (poppy, sunflower, and safflower oils) were submitted to the same chemical and isotopic analyses. The bulk and molecular delta(13)C values were typical for C(3) plants. The delta(13)C value of palmitic acid (delta(13)C(16:0)) and n-3 alpha-linolenic acid (delta(13)C(18:3n-3)) differed (p < 0.001) between rape, flax, and poppy oils. Also within species, significant differences of delta(13)C(FA) were observed (p < 0.01). The hydrogen and oxygen isotope compositions of rape oil differed between cultivars (p < 0.05). Major differences in the individual delta(13)C(FA) values were found. A plant-specific carbon isotope fractionation occurs during the biosynthesis of the fatty acids and particularly during desaturation of C(18) acids in rape and flax. Bulk oil and specific fatty acid stable isotope analysis might be useful in tracing dietary lipids differing in their origin.