907 resultados para Minimum bias
Resumo:
In this thesis the role played by expansive and introduced species in the phytoplankton ecology of the Baltic Sea was investigated. The aims were threefold. First, the studies investigated the resting stages of dinoflagellates, which were transported into the Baltic Sea via shipping and were able to germinate under the ambient, nutrient-rich, brackish water conditions. The studies also estimated which factors favoured the occurrence and spread of P. minimum in the Baltic Sea and discussed the identification of this morphologically variable species. In addition, the classification of phytoplankton species recently observed in the Baltic Sea was discussed. Incubation of sediments from four Finnish ports and 10 ships ballast tanks revealed that the sediments act as sources of living dinoflagellates and other phytoplankton. Dinoflagellates germinated from all ports detected and from 90% of ballast tanks. The concentrations of cells germinating from ballast tank sediments were mostly low compared with the acceptable cell concentrations set by the International Maritime Organization s (IMO s) International Convention for the Control and Management of Ships Ballast Water and Sediments. However, the IMO allows such high concentrations of small cells in the discharged ballast water that the total number of cells in large ballast water tanks can be very high. Prorocentrum minimum occurred in the Baltic Sea annually but with no obvious trend in the 10-year timespan from 1993 to 2002. The species occurred under wide ranges of temperatures and salinities and the abundance of the species was positively related especially to the presence of organic nitrogen and phosphorus. This indicated that the species was favoured by increased organic nutrient loading and runoff from land and rivers. The cell shape of P. minimum varied from triangular to oval-round, but morphological fine details indicated that only one morphospecies was present. P. minimum also is, according to present knowledge, the only potentially harmful phytoplankton species that has recently expanded widely into new areas of the Baltic Sea.
Resumo:
We have studied the microstructure, surface states, valence fluctuations, magnetic properties, and exchange bias effect in MnO2 nanowires. High purity α-MnO 2 rectangular nanowires were synthesized by a facile hydrothermal method with microwave-assisted procedures. The microstructure analysis indicates that the nanowires grow in the [0 0 1] direction with the (2 1 0) plane as the surface. Mn3+ and Mn2+ ions are not found in the system by X-ray photoelectron spectroscopy. The effective magnetic moment of the manganese ions fits in with the theoretical and experimental values of Mn4+ very well. The uncoupled spins in 3d3 orbitals of the Mn 4+ ions in MnO 6 octahedra on the rough surface are responsible for the net magnetic moment. Spin glass behavior is observed through magnetic measurements. Furthermore, the exchange bias effect is observed for the first time in pure α-MnO2 phase due to the coupling of the surface spin glass with the antiferromagnetic α-MnO2 matrix. These α-MnO2 nanowires, with a spin-glass-like behavior and with an exchange bias effect excited by the uncoupled surface spins, should therefore inspire further study concerning the origin, theory, and applicability of surface structure induced magnetism in nanostructures.
Resumo:
The two-year trial of the Queensland minimum passing distance (MPD) road rule began on 7 April 2014. The rule requires motor vehicles to provide cyclists a minimum lateral passing distance of one metre when overtaking cyclists in a speed zone of 60 km/h or less, and 1.5 metres when the speed limit is greater than 60 km/h. This document summarises the evaluation of the effectiveness of the new rule in terms of its: 1. practical implementation; 2. impact on road users’ attitudes and perceptions; and 3. road safety benefits. The Centre for Accident Research and Road Safety – Queensland (CARRS-Q) developed the evaluation framework (Haworth, Schramm, Kiata-Holland, Vallmuur, Watson & Debnath; 2014) for the Queensland Department of Transport and Main Roads (TMR) and was later commissioned to undertake the evaluation. The evaluation included the following components: • Review of correspondence received by TMR; • Interviews and focus groups with Queensland Police Service (QPS) officers; • Road user survey; • Observational study; and • Crash, injury and infringement data analysis.
Resumo:
Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.
Resumo:
Two decision versions of a combinatorial power minimization problem for scheduling in a time-slotted Gaussian multiple-access channel (GMAC) are studied in this paper. If the number of slots per second is a variable, the problem is shown to be NP-complete. If the number of time-slots per second is fixed, an algorithm that terminates in O (Length (I)N+1) steps is provided.
Resumo:
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, pointlike impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the dc and ac components of the current have power-law dependences on the bias and pumping frequencies with an exponent 2K-1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current grows large for special values of the bias. For noninteracting electrons with K=1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.
Resumo:
Though silicon tunnel field effect transistor (TFET) has attracted attention for sub-60 mV/decade subthreshold swing and very small OFF current (IOFF), its practical application is questionable due to low ON current (ION) and complicated fabrication process steps. In this paper, a new n-type classical-MOSFET-alike tunnel FET architecture is proposed, which offers sub-60 mV/decade subthreshold swing along with a significant improvement in ION. The enhancement in ION is achieved by introducing a thin strained SiGe layer on top of the silicon source. Through 2D simulations it is observed that the device is nearly free from short channel effect (SCE) and its immunity towards drain induced barrier lowering (DIBL) increases with increasing germanium mole fraction. It is also found that the body bias does not change the drive current but after body current gets affected. An ION of View the MathML source and a minimum average subthreshold swing of 13 mV/decade is achieved for 100 nm channel length device with 1.2 V supply voltage and 0.7 Ge mole fraction, while maintaining the IOFF in fA range.
Resumo:
We discuss a technique for solving the Landau-Zener (LZ) problem of finding the probability of excitation in a two-level system. The idea of time reversal for the Schrodinger equation is employed to obtain the state reached at the final time and hence the excitation probability. Using this method, which can reproduce the well-known expression for the LZ transition probability, we solve a variant of the LZ problem, which involves waiting at the minimum gap for a time t(w); we find an exact expression for the excitation probability as a function of t(w). We provide numerical results to support our analytical expressions. We then discuss the problem of waiting at the quantum critical point of a many-body system and calculate the residual energy generated by the time-dependent Hamiltonian. Finally, we discuss possible experimental realizations of this work.
Resumo:
Previous research has shown that action tendencies to approach alcohol may be modified using computerized ApproacheAvoidance Task (AAT), and that this impacted on subsequent consumption. A recent paper in this journal (Becker, Jostman, Wiers, & Holland, 2015) failed to show significant training effects for food in three studies: Nor did it find effects on subsequent consumption. However, avoidance training to high calorie foods was tested against a control rather than Approach training. The present study used a more comparable paradigm to the alcohol studies. It randomly assigned 90 participants to ‘approach’ or ‘avoid’ chocolate images on the AAT, and then asked them to taste and rate chocolates. A significant interaction of condition and time showed that training to avoid chocolate resulted in faster avoidance responses to chocolate images, compared with training to approach it. Consistent with Becker et al.'s Study 3, no effect was found on amounts of chocolate consumed, although a newly published study in this journal (Schumacher, Kemps, & Tiggemann, 2016) did do so. The collective evidence does not as yet provide solid basis for the application of AAT training to reduction of problematic food consumption, although clinical trials have yet to be conducted.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time 0(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time 0(n(3+2/k)), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega)) bound. We also present a 2-approximation algorithm with O(m(omega) root n log n) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Silicon particle detectors are used in several applications and will clearly require better hardness against particle radiation in the future large scale experiments than can be provided today. To achieve this goal, more irradiation studies with defect generating bombarding particles are needed. Protons can be considered as important bombarding species, although neutrons and electrons are perhaps the most widely used particles in such irradiation studies. Protons provide unique possibilities, as their defect production rates are clearly higher than those of neutrons and electrons, and, their damage creation in silicon is most similar to the that of pions. This thesis explores the development and testing of an irradiation facility that provides the cooling of the detector and on-line electrical characterisation, such as current-voltage (IV) and capacitance-voltage (CV) measurements. This irradiation facility, which employs a 5-MV tandem accelerator, appears to function well, but some disadvantageous limitations are related to MeV-proton irradiation of silicon particle detectors. Typically, detectors are in non-operational mode during irradiation (i.e., without the applied bias voltage). However, in real experiments the detectors are biased; the ionising proton generates electron-hole pairs, and a rise in rate of proton flux may cause the detector to breakdown. This limits the proton flux for the irradiation of biased detectors. In this work, it is shown that, if detectors are irradiated and kept operational, the electric field decreases the introduction rate of negative space-charges and current-related damage. The effects of various particles with different energies are scaled to each others by the non-ionising energy loss (NIEL) hypothesis. The type of defects induced by irradiation depends on the energy used, and this thesis also discusses the minimum proton energy required at which the NIEL-scaling is valid.
Resumo:
Background Traffic offences have been considered an important predictor of crash involvement, and have often been used as a proxy safety variable for crashes. However the association between crashes and offences has never been meta-analysed and the population effect size never established. Research is yet to determine the extent to which this relationship may be spuriously inflated through systematic measurement error, with obvious implications for researchers endeavouring to accurately identify salient factors predictive of crashes. Methodology and Principal Findings Studies yielding a correlation between crashes and traffic offences were collated and a meta-analysis of 144 effects drawn from 99 road safety studies conducted. Potential impact of factors such as age, time period, crash and offence rates, crash severity and data type, sourced from either self-report surveys or archival records, were considered and discussed. After weighting for sample size, an average correlation of r = .18 was observed over the mean time period of 3.2 years. Evidence emerged suggesting the strength of this correlation is decreasing over time. Stronger correlations between crashes and offences were generally found in studies involving younger drivers. Consistent with common method variance effects, a within country analysis found stronger effect sizes in self-reported data even controlling for crash mean. Significance The effectiveness of traffic offences as a proxy for crashes may be limited. Inclusion of elements such as independently validated crash and offence histories or accurate measures of exposure to the road would facilitate a better understanding of the factors that influence crash involvement.
Resumo:
Results of measurements at a high frequency on reverse bias capacitance of copper-doped germanium junctions are reported. Phenomenal increase in capacitance is found in the breakdown region, particularly at low temperatures.
Resumo:
Making use of the empirical potential functions for peptide NH .. O bonds, developed in this laboratory, the relative stabilities of the rightand left-handed α-helical structures of poly-L-alanine have been investigated, by calculating their conformational energies (V). The value of Vmin of the right-handed helix (αP) is about - 10.4 kcal/mole, and that of the left-handed helix (αM) is about - 9.6 kcal/mole, showing that the former is lower in energy by 0.8 kcal/mole. The helical parameters of the stable conformation of αP are n ∼ 3.6 and h ∼ 1.5 Å. The hydrogen bond of length 2.85 Å and nonlinearity of about 10° adds about 4.0 kcal/ mole to the stabilising energy of the helix in the minimum enregy region. The energy minimum is not sharply defined, but occurs over a long valley, suggesting that a distribution of conformations (φ{symbol}, ψ) of nearly the same energy may occur for the individual residues in a helix. The experimental data of a-helical fibres of poly-L-alanine are in good agreement with the theoretical results for αP. In the case of proteins, the mean values of (φ{symbol}, ψ) for different helices are distributed, but they invariably occur within the contour for V = Vmin + 2 kcal/mole for αP.
Resumo:
It has been shown that the conventional practice of designing a compensated hot wire amplifier with a fixed ceiling to floor ratio results in considerable and unnecessary increase in noise level at compensation settings other than optimum (which is at the maximum compensation at the highest frequency of interest). The optimum ceiling to floor ratio has been estimated to be between 1.5-2.0 ωmaxM. Application of the above considerations to an amplifier in which the ceiling to floor ratio is optimized at each compensation setting (for a given amplifier band-width), shows the usefulness of the method in improving the signal to noise ratio.