931 resultados para Microstructure Variation
Resumo:
Objectives We studied the relationship between changes in body composition and changes in blood pressure levels. Background The mechanisms underlying the frequently observed progression from pre-hypertension to hypertension are poorly understood. Methods We examined 1,145 subjects from a population-based survey at baseline in 1994/1995 and at follow-up in 2004/2005. First, we studied individuals pre-hypertensive at baseline who, during 10 years of follow-up, either had normalized blood pressure (PreNorm, n = 48), persistently had pre-hypertension (PrePre, n = 134), or showed progression to hypertension (PreHyp, n = 183). In parallel, we studied predictors for changes in blood pressure category in individuals hypertensive at baseline (n = 429). Results After 10 years, the PreHyp group was characterized by a marked increase in body weight (+5.71% [95% confidence interval (CI): 4.60% to 6.83%]) that was largely the result of an increase in fat mass (+17.8% [95% CI: 14.5% to 21.0%]). In the PrePre group, both the increases in body weight (+1.95% [95% CI: 0.68% to 3.22%]) and fat mass (+8.09% [95% CI: 4.42% to 11.7%]) were significantly less pronounced than in the PreHyp group (p < 0.001 for both). The PreNorm group showed no significant change in body weight (-1.55% [95% CI: -3.70% to 0.61%]) and fat mass (+0.20% [95% CI: -6.13% to 6.52%], p < 0.05 for both, vs. the PrePre group). Conclusions After 10 years of follow-up, hypertension developed in 50.1% of individuals with pre-hypertension and only 6.76% went from hypertensive to pre-hypertensive blood pressure levels. An increase in body weight and fat mass was a risk factor for the development of sustained hypertension, whereas a decrease was predictive of a decrease in blood pressure. (J Am Coll Cardiol 2010; 56: 65-76) (C) 2010 by the American College of Cardiology Foundation
Resumo:
Purpose: The aim of this study was to investigate the impact of acute PaCO(2) temporal variation on the standard base excess (SBE) value in critically ill patients. Methods: A total of 265 patients were prospectively observed; 158 were allocated to the modeling group, and 107 were allocated to the validation group. Two models were developed in the modeling group (one including and one excluding PaCO(2) as a variable determinant of SBE), and both were tested in the validation group. Results: In the modeling group, the mathematical model including SIDai, SIG, L-lactate, albumin, phosphate, and PaCO(2) had a predictive superiority in comparison with the model without PaCO(2) (R(2) = 0.978 and 0.916, respectively). In the validation group, the results were confirmed with significant F change statistics (R(2) change = 0.059, P < .001) between the model with and without PaCO(2). A high correlation (R = 0.99, P < .001) and agreement (bias = -0.25 mEq/L, limits of agreement 95% = -0.72 to 0.22 mEq/L) were found between the model-predicted SBE value and the SBE calculated using the Van Slyke equation. Conclusions: Acute PaCO(2), temporal variation is related to SBE changes in critically ill patients. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: A giant fusiform aneurysm in the posterior cerebral artery (PCA) is rare, as is fenestration of the PCA and basilar apex variation. We describe the angiographic and surgical findings of a giant fusiform aneurysm in the P1-P2 PCA segment associated with PCA bilateral fenestration and superior cerebellar artery double origin. CLINICAL PRESENTATION: A 26-year-old woman presented with a 2-month history of visual blurring. Digital subtraction angiography showed a giant (2.5 cm) fusiform PCA aneurysm in the right P1-P2 segment. The 3-dimensional view showed a caudal fusion pattern from the upper portion of the basilar artery associated with a bilateral long fenestration of the P1 and P2 segments and superior cerebellar artery double origin. INTERVENTION: Surgical trapping of the right P1 -P2 segment, including the posterior communicating artery, was performed by a pretemporal approach. Angiograms performed 3 and 13 months after surgery showed complete aneurysm exclusion, and the PCA was permeated and filled the PCA territory. Clinical follow-up at 14 months showed the patient with no deficits and a return to normal life. CONCLUSION: To our knowledge, this is the first report of a giant fusiform aneurysm of the PCA associated with P1-P2 segment fenestration and other variations of the basilar apex (bilateral superior cerebellar artery duplication and caudal fusion). Comprehension of the embryology and anatomy of the PCA and its related vessels and branches is fundamental to the decision-making process for a PCA aneurysm, especially when parent vessel occlusion is planned.
Resumo:
Background and objective: Dynamic indices represented by systolic pressure variation and pulse pressure variation have been demonstrated to be more accurate than filling pressures in predicting fluid responsiveness. However, the literature is scarce concerning the impact of different ventilatory modes on these indices. We hypothesized that systolic pressure variation or pulse pressure variation could be affected differently by volume-controlled ventilation and pressure-controlled ventilation in an experimental model, during normovolaemia and hypovolaemia. Method: Thirty-two anaesthetized rabbits were randomly allocated into four groups according to ventilatory modality and volaemic status where G1-ConPCV was the pressure-controlled ventilation control group, G2-HemPCV was associated with haemorrhage, G3-ConVCV was the volume-controlled ventilation control group and G4-HemVCV was associated with haemorrhage. In the haemorrhage groups, blood was removed in two stages: 15% of the estimated blood volume withdrawal at M1, and, 30 min later, an additional 15% at M2. Data were submitted to analysis of variance for repeated measures; a value of P < 0.05 was considered to be statistically significant. Results: At MO (baseline), no significant differences were observed among groups. At M1, dynamic parameters differed significantly among the control and hypovolaemic groups (P < 0.05) but not between ventilation modes. However, when 30% of the estimated blood volume was removed (M2), dynamic parameters became significantly higher in animals under volume-controlled ventilation when compared with those under pressure-controlled ventilation. Conclusions: Under normovolaemia and moderate haemorrhage, dynamic parameters were not influenced by either ventilatory modalities. However, in the second stage of haemorrhage (30%), animals in volume-controlled ventilation presented higher values of systolic pressure variation and pulse pressure variation when compared with those submitted to pressure-controlled ventilation.
Resumo:
Background & aim: Many disease outbreaks of food origin are caused by foods prepared in Food Service and Nutrition Units of hospitals, affecting hospitalized patients who, in most cases, are immunocompromised and therefore at a higher risk of severe worsening of their clinical status. The aim of this study was to determine the variations in temperature and the time-temperature factor of hospital diets. Methods: The time and temperature for the preparation of 4 diets of modified consistency were determined on 5 nonconsecutive days in a hospital Diet and Nutrition Unit at the end of preparation and during the maintenance period, portioning and distribution at 3 sites, i.e., the first, the middle and the last to receive the diets. Results and discussion: All foods reached an adequate temperature at the end of cooking, but temperature varied significantly from the maintenance period to the final distribution, characterizing critical periods for microorganism proliferation. During holding, temperatures that presented a risk were reached by 16.7% of the meats and 59% of the salads of the general diet, by 16.7% of the garnishes in the bland diet and by 20% of the meats and garnishes in the viscous diet. The same occurred at the end of distribution for 100% of the hot samples and of the salads and for 61% of the desserts. None of the preparations remained at risk temperature for a time exceeding that established by law. Conclusion: The exposure to inadequate temperature did not last long enough to pose risks to the patient.
Resumo:
Previous studies have demonstrated that the pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Variation in the venom proteome is a well-documented phenomenon; however, variation in the venom peptidome is poorly understood. We report a comparative proteomic and peptidomic analysis of venoms from newborn and adult specimens of B. jararaca and correlate it with the evaluation of important venom features. We demonstrate that newborn and adult venoms have similar hemorrhagic activities, while the adult venom has a slightly higher lethal activity in mice; however, the newborn venom is extremely more potent to kill chicks. The coagulant activity of newborn venom upon human plasma is 10 times higher than that of adult venom. These differences were clearly reflected in their different profiles of SDS-PAGE, gelatin zimography, immunostaining using specific antibodies, glycosylation pattern, and concanavalin A-binding proteins. Furthermore, we report for the first time the analysis of the peptide fraction of newborn and adult venoms by MALDI-TOF mass spectrometry and LC-MS/MS, which revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles and were detected in the venoms showing their canonical sequences and also novel sequences corresponding to BPPs processed from their precursor protein at sites so far not described. As a result of these studies, we demonstrated that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and in animal size are associated with changes in the venom proteome in B. jararaca species.
Resumo:
The alpha-lactalbumin is a subunit of lactose-synthase, an enzyme responsible for lactose production, a disaccharide that influences milk production. Sequence variations of bovine alpha-lactalbumin have been associated with differences in milk yield. This study aimed to analyze allelic frequency differences at position-1689 (g. AG) and+15 (g. AG) of the alpha-lactalbumin gene in Holstein (Bos taurus) and Nellore (Bos indicus) cows. Blood samples were analyzed from 34 Holstein, 104 Nellore, and 99 Dairy Nellore cows using PCR-RFLP. The different RFLP patterns were sequenced and a novel sequence variation on nucleotide-46 was identified. An adenine at this position was designated as the A allele and a guanine was designated B allele. The frequencies of alleles A-1689, A-46, and A+15 differed between Holstein and both Nellore breeds. The results show that differences in alpha-lactalbumin allelic variants in the 5`-flanking and the 5`-UTR region might be associated with differences in milk production between Holstein cows and cows from Nellore breeds. However, the lack of difference between Nellore and Dairy Nellore suggests that other sequence variantions that regulate milk production might be responsible for the selection of Dairy Nellore cows with superior milk production.
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Resumo:
Objectives. To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Methods. Bar-shaped specimens were fabricated according to the manufacturer`s instructions. Specimens were tested in three-point flexure in 37 degrees C artificial saliva. Weibull analysis (n = 30) and a constant stress-rate test (n = 10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukey`s test (alpha = 0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. Results. YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (sigma(0)) value (911 MPa) followed by AL (488 MPa) and IZ (423 MPa). Lower sigma(0) values were observed for the porcelains (68-75 MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48 mu m) and among the porcelains (75-86 mu m). Significance. The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. Methods. Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers` instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. Results. For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. Significance. The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The objective of this study was to verify the influence of test environment on the flexural strength of dental porcelains with distinct microstructures. Material and Methods: Disk-shaped specimens from three dental porcelains with distinct leucite content (VM: zero; CE: 12; NS: 22 vol%) were manufactured and tested for biaxial flexural strength in air and immersed in artificial saliva. The results were analyzed by means of two-way ANOVA and Tukey`s test (alpha = 0.05). Results: The flexural strength (MPa) obtained for ambient air and artificial saliva environments, respectively, were: 110.0 +/- 16.0 and 81.5 +/- 10.8 for VM; 51.9 +/- 4.0 and 42.0 +/- 4.7 for CE; 72.0 +/- 11.5 and 63.6 +/- 5.8 for NS. A numerical decrease in the mean flexural strength was observed for all groups when specimens were tested under artificial saliva; however, the difference was only statistically significant for VM. Conclusions: The results indicate that the effect of water immersion on the flexural strength of dental porcelains varies according to their leucite content, as only the material without leucite in its microstructure (VM) showed significant strength degradation when tested under water.
Resumo:
Statement of the Problem: Adhesive systems can spread differently onto a substrate and, consequently, influence bonding. Purpose: The purpose of this study was to evaluate the effect of differently oriented dentin surfaces and the regional variation of specimens on adhesive layer thickness and microtensile bond strength (MTBS). Materials and Methods: Twenty-four molars were sectioned mesiodistally to expose flat buccal and lingual halves. Standardized drop volumes of adhesive systems (Single Bond [SB] and Prime & Bond 2.1 [PB2.1]) were applied to dentin according to the manufacturer`s instructions. Teeth halves were randomly divided into groups: 1A-SB/parallel to gravity; 1B-SB/perpendicular to gravity; 2A-PB2.1/parallel to gravity; and 2B-PB2.1/perpendicular to gravity. The bonded assemblies were stored in 37 degrees C distilled water for 24 hours and then sectioned to obtain dentin sticks (0.8 mm(2)). The adhesive layer thickness was determined in a light microscope (x200), and after 48 hours the specimens were subjected to MTBS test. Data were analyzed by one-way and two-way analysis of variance and Student-Newman-Keuls tests. Results: Mean values (MPa +/- SD) of MTBS were: 39.1 +/- 12.9 (1A); 32.9 +/- 12.4 (1B); 52.9 +/- 15.2 (2A); and 52.3 +/- 16.5 (2B). The adhesive systems` thicknesses (mu m +/- SD) were: 11.2 +/- 2.9 (1A); 18.1 +/- 7.3 (1B); 4.2 +/- 1.8 (2A); and 3.9 +/- 1.3 (2B). No correlation between bond strength and adhesive layer thickness for both SB and PB2.1 (r = -0.224, p = 0.112 and r = 0.099, p = 0.491, respectively) was observed. Conclusions: The differently oriented dentin surfaces and the regional variation of specimens on the adhesive layer thickness are material-dependent. These variables do not influence the adhesive systems` bond strength to dentin. CLINICAL SIGNIFICANCE Adhesive systems have different viscosities and spread differently onto a substrate, influencing the bond strength and also the adhesive layer thickness. Adhesive thickness does not influence dentin bond strength, but it may impair adequate solvent evaporation, polymer conversion, and may also determine water sorption and adhesive degradation over time. In the literature, many studies have shown that the adhesive layer is a permeable membrane and can fail over timebecause ofits continuous plasticizing and degradation when in contact with water. Therefore, avoiding thick adhesive layers may minimize these problems and provide long-term success for adhesive restorations.
Resumo:
T-cell cytokine profiles, anti Porphyromonas gingivalis antibodies and Western blot analysis of antibody responses were examined in BALB/c, CBA/CaH, C57BL6 and DBA/2J mice immunized intraperitoneally with different doses of P. gingivalis outer membrane antigens, Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-LD by FAGS analysis and levels of anti-P. gingivalis antibodies in the serum samples determined by enzyme-linked immunosorbent assay. Western blot analysis was performed on the sera from mice immunized with 100 mug of P. gingivalis antigens. The four strains of mice demonstrated varying degrees of T-cell immunity although the T-cell cytokine profiles exhibited by each strain were not affected by different immunizing doses. While BALB/c and DBA/2J mice exhibited responses that peaked at immunizing doses of 100-200 mug of P. gingivalis antigens, CBA/CaH and C57BL6 demonstrated weak T-cell responsiveness compared with control mice. Like the T-cell responses, serum antibody levels were not dose dependent. DBA/23 exhibited the lowest levels of anti-P. gingivalis antibodies followed by BALB/c with CBA/CaH and C57BL6 mice demonstrating the highest levels. Western blot analysis showed that there were differences in reactivity between the strains to a group of 13 antigens ranging in molecular weight from 15 to 43 kDa. Antibody responses to a number of these bands in BALB/c mice were of low density, whereas CBA/CaH and C57BL6 mice demonstrated high-density bands and DBA/2J mice showed medium to high responses. In conclusion, different immunizing doses of P. gingivalis outer membrane antigens had little effect on the T-cell cytokine responses and serum anti-P. gingivalis antibody levels. Western blot analysis, however, indicated that the four strains of mice exhibited different reactivity to some lower-molecular-weight antigens. Future studies are required to determine the significance of these differences, which may affect the outcome of P. gingivalis infection.
Resumo:
The effect of controlled In3+ substitution on to the B-site in the perovskite oxygen ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) has been examined with a view to exploring the influence on oxygen ion conductivity. In combination with the electrical conductivity study, detailed microstructural analysis was used to verify the location of the substituting cation and to determine the nature of secondary phase formation. The indium species clearly substituted for Ga3+ on the B-site of the lattice and the electrical conductivity showed a gradual decrease as the In+3 content increased. The interpretation of this data was complicated by the formation of the secondary phases LaInO3 and LaSrGaO4. (C) 2001 Elsevier Science Ltd. All rights reserved.