558 resultados para Microhardness
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
This study evaluated the effect of different parameters of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on enamel mineral loss in a simulated caries model. Forty-five enamel samples obtained from third molar teeth (3 mmx 3 mm) were randomly divided into five groups (n = 9): G1-Er,Cr:YSGG laser at 0.25 W, 20 Hz, 2.8 J/cm(2); G2-Er,Cr:YSGG laser at 0.50 W, 20 Hz, 5.7 J/cm(2); G3-Er,Cr:YSGG laser at 0.75 W, 20 Hz, 8.5 J/cm(2); G4-sodium fluoride (NaF) dentifrice (positive control); G5-no treatment (negative control). After irradiation, the samples were submitted to 2 weeks of pH cycling. After the acid challenge, the samples were assessed by cross-sectional microhardness at different depths from the enamel surface. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed (alpha = 5%). The percentage of lesion inhibition for each group was: G1 37%; G2 38%; G3 64%, and G4 50.5%. Regarding the relative mineral loss values (micrometers x volume percent), groups G1 (1,392 +/- 522) and G2 (1,292 +/- 657) did not differ significantly from each other, but both had higher values than group G3 (753 +/- 287); the groups irradiated with Er,Cr:YSGG laser did not differ from group G4. Although the findings of the study revealed that Er,Cr:YSGG laser irradiation at 8.5 J/cm(2) can be an alternative for the enhancement of the enamel`s resistance to acid, lower energy densities also produced a cariostatic potential comparable to the use of fluoride dentifrice.
Resumo:
This in vitro study aimed to determine whether the micro-hardness of a composite resin is modified by the light units or by the thickness of the increment. Composite resin disks were divided into 15 groups (n = 5), according to the factors under study: composite resin thickness (0 mm, 1 mm, 2 mm , 3 mm and 4 mm) and light units. The light activation was performed with halogen light (HL) (40 s, 500 mW/cm(2)), argon ion laser (AL) (30 s, 600 mW/cm(2)) or light-emitting diode (LED) (30 s, 400 mW/cm(2)). Vickers micro-hardness tests were performed after 1 week and were carried out on the top surface (0 mm-control) and at different depths of the samples. Analysis of variance (ANOVA) and Tukey tests (P a parts per thousand currency signaEuro parts per thousand 0.05) revealed no statistically significant difference among the light units for the groups of 0 mm and 1 mm thickness. At 2 mm depth, the AL was not statistically different from the HL, but the latter showed higher micro-hardness values than the LED. In groups with 3 mm and 4 mm thickness, the HL also showed higher micro-hardness values than the groups activated by the AL and the LED. Only the HL presented satisfactory polymerization with 3 mm of thickness. With a 4 mm increment no light unit was able to promote satisfactory polymerization.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Resumo:
The objective of this study was to verify the influence of photoactivation with the argon ion laser on shrinkage stress (SS), followed by evaluation of Vickers microhardness (VM), percentage of maximum hardness (PMH), flexural strength (FS), and flexural modulus (FM) of a composite resin. The study groups were: L1-laser at 200 mW for 10 seconds; L2-laser at 200 mW for 20 seconds; L3-laser at 250 mW for 10 seconds; L4-laser at 250 mW for 20 seconds; H-halogen light at 275 mW for 20 seconds. Data were analyzed by ANOVA/Tukey`s test (alpha=5%). The values of SS (MPa) were statistically lower for the group L3 (1.3)c, followed by groups L1 (2.7)b, L4 (3.4)a, b, L2 (3.7)a, and H (4.5)a. There was no difference in the values of VM when the same time of photoactivation was used, with respective values being L1=70.1a, L2=78.1b, L3=69.9a, L4=78.1b and H=79.9b. All groups showed a PMH of at least 80%. Only the group L1 showed differences in FS (MPa) and FM (GPa), the respective values of 86.2 and 5.4 being lower. Therefore, the use of argon ion laser had influenced the composite resin polymerization. The L3 group presented adequate mechanical properties and minimum SS, reducing the clinical working time for photoactivation of restorations with the tested resin by 50%.
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.
Resumo:
Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The aims of this study were: (1) to correlate surface (SH) and cross-sectional hardness (CSH) with microradiographic parameters of artificial enamel lesions; (2) to compare lesions prepared by different protocols. Fifty bovine enamel specimens were allocated by stratified randomisation according to their initial SH values to five groups and lesions produced by different methods: MC gel (methylcellulose gel/lactic acid, pH 4.6, 14 days); PA gel (polyacrylic acid/lactic acid/hydroxyapatite, pH 4.8, 16 h); MHDP (undersaturated lactate buffer/methyl diphosphonate, pH 5.0, 6 days); buffer (undersaturated acetate buffer/fluoride, pH 5.0, 16 h), and pH cycling (7 days). SH of the lesions (SH(1)) was measured. The specimens were longitudinally sectioned and transverse microradiography (TMR) and CSH measured at 10- to 220-mu m depth from the surface. Overall, there was a medium correlation but non-linear and variable relationship between mineral content and root CSH. root SH(1) was weakly to moderately correlated with surface layer properties, weakly correlated with lesion depth but uncorrelated with integrated mineral loss. MHDP lesions showed the highest subsurface mineral loss, followed by pH cycling, buffer, PA gel and MC gel lesions. The conclusions were: (1) CSH, as an alternative to TMR, does not estimate mineral content very accurately, but gives information about mechanical properties of lesions; (2) SH should not be used to analyse lesions; (3) artificial caries lesions produced by the protocols differ, especially considering the method of analysis. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
Objective: This in situ/ex vivo study assessed the effect of titanium tetrafluoride (TiF4) on permanent human enamel subjected to erosion. Design: Ten volunteers took part in this study performed in two phases. In the first phase (ERO), they wore acrylic palatal appliances containing two enamel blocks, divided into two rows: TiF4 (F) and no-TiF4 (no-F). During the 1st day, the formation of a salivary pellicle was allowed. In the 2nd day, the TiF4 solution was applied on one row (ERO + F), whereas on the other row no treatment was performed (ERO + no-F). From 3rd until 7th day, the blocks were subjected to erosion, 4x per day. In the 2nd phase (no-ERO), the volunteers wore acrylic palatal appliances containing one enamel block, during 2 days, to assess the effect of TiF4 only (no-ERO + F). Enamel alterations were determined using profilometry (wear), microhardness (%SMHC) tests, scanning electron microscope and microprobe analysis. The %SMHC and wear were tested using ANOVA and Tukey`s post hoc tests (p < 0.05). Results: The mean of %SMHC and wear ( mu m) values ( +/- S.D.) were, respectively: ERO + F -73.32 +/- 5.16(A)/2.40 +/- 0.60(a); ERO + no-F -83.49 +/- 4.59B/1.17 +/- 0.48(b) and no-ERO + F -67.92 +/- 6.16(A)/0.21:E 0.09(c). In microscope analysis, the no-F group showed enamel with honeycomb appearance. For F groups, it was observed a surface coating with microcracks. The microprobe analysis revealed the presence of the following elements (%) in groups ERO + F, ERO + no-F and no-ERO + F, respectively: Ca (69.9, 72.5, 66.25); P (25.9, 26.5, 26.06); Ti (3.0, 0, 5.93). Conclusions: The TiF4 was unable to reduce dental erosion. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
Objective: As resin-modified glass-ionomer cement (RMGIC) is an adhesive material, its association to dentin bonding agents (DBAs) was previously proposed. This study investigated the adjunctive behavior of an RMGIC with etch-and-rinse bonding systems under in situ/ex vivo cariogenic challenge. Method and Materials: Bovine enamel blocks (3 3 2 mm) were randomly assigned to group VP, Vitremer + its own primer (3M ESPE); group VSB, Vitremer + Single Bond (3M ESPE); and group VPB, Vitremer + Prime & Bond 2.1 (Dentsply). Two blocks of each group were randomly placed in an acrylic palatal appliance, so each appliance included six blocks. Volunteers (n = 10) wore these appliances according to given instructions to promote a sucrose challenge eight times/day for 15 days. After this period, the blocks were removed from the devices and cleaned, and demineralization was assessed through longitudinal microhardness analysis (Knoop indenter, 25 g/5 s). Data were submitted to three-way ANOVA and Tukey test (P < .05). Results: No treatment was able to completely avoid demineralization. All materials showed a statistically significant difference in mineral loss when the microhardness on the outer enamel was compared with deeper regions (P < .05). Conclusion: Association of the tested RMGICs with etch-and-rinse DBAs did not seem to be more beneficial against caries than the conventional treatment with RMGIC. (Quintessence Int 2010; 41: e192-e199)
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
Objectives. To evaluate the influence of different tertiary amines on degree of conversion (DC), shrinkage-strain, shrinkage-strain rate, Knoop microhardness, and color and transmittance stabilities of experimental resins containing BisGMA/TEGDMA (3: 1 wt), 0.25wt% camphorquinone, 1wt% amine (DMAEMA, CEMA, DMPT, DEPT or DABE). Different light-curing protocols were also evaluated. Methods. DC was evaluated with FTIR-ATR and shrinkage-strain with the bonded-disk method. Shrinkage-strain-rate data were obtained from numerical differentiation of shrinkage-strain data with respect to time. Color stability and transmittance were evaluated after different periods of artificial aging, according to ISO 7491: 2000. Results were evaluated with ANOVA, Tukey, and Dunnett`s T3 tests (alpha = 0.05). Results. Studied properties were influenced by amines. DC and shrinkage-strain were maximum at the sequence: CQ < DEPT < DMPT <= CEMA approximate to DABE < DMAEMA. Both DC and shrinkage were also influenced by the curing protocol, with positive correlations between DC and shrinkage-strain and DC and shrinkage-strain rate. Materials generally decreased in L* and increased in b*. The strong exception was the resin containing DMAEMA that did not show dark and yellow shifts. Color varied in the sequence: DMAEMA < DEPT < DMPT < CEMA < DABE. Transmittance varied in the sequence: DEPT approximate to DABE < DABE approximate to DMPT approximate to CEMA < DMPT approximate to CEMA approximate to DMAEMA, being more evident at the wavelength of 400 nm. No correlations between DC and optical properties were observed. Significance. The resin containing DMAEMA showed higher DC, shrinkage-strain, shrinkage-strain rate, and microhardness, in addition to better optical properties. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.