123 resultados para Meteorites.
Resumo:
New high-precision niobium (Nb) and tantalum (Ta) concentration data are presented for early Archaean metabasalts, metabasaltic komatiites and their erosion products (mafic metapelites) from SW Greenland and the Acasta gneiss complex, Canada. Individual datasets consistently show sub-chondritic Nb/Ta ratios averaging 15.1+/-11.6. This finding is discussed with regard to two competing models for the solution of the Nb-deficit that characterises the accessible Earth. Firstly, we test whether Nb could have sequestered into the core due to its slightly siderophile (or chalcophile) character under very reducing conditions, as recently proposed from experimental evidence. We demonstrate that troilite inclusions of the Canyon Diablo iron meteorite have Nb and V concentrations in excess of typical chondrites but that the metal phase of the Grant, Toluca and Canyon Diablo iron meteorites do not have significant concentrations of these lithophile elements. We find that if the entire accessible Earth Nb-deficit were explained by Nb in the core, only ca. 17% of the mantle could be depleted and that by 3.7 Ga, continental crust would have already achieved ca. 50% of its present mass. Nb/Ta systematics of late Archaean metabasalts compiled from the literature would further require that by 2.5 Ga, 90% of the present mass of continental crust was already in existence. As an alternative to this explanation, we propose that the average Nb/Ta ratio (15.1+/-11.6) of Earth's oldest mafic rocks is a valid approximation for bulk silicate Earth. This would require that ca. 13% of the terrestrial Nb resided in the Ta-free core. Since the partitioning of Nb between silicate and metal melts depends largely on oxygen fugacity and pressure, this finding could mean that metal/silicate segregation did not occur at the base of a deep magma ocean or that the early mantle was slightly less reducing than generally assumed. A bulk silicate Earth Nb/Ta ratio of 15.1 allows for depletion of up to 40% of the total mantle. This could indicate that in addition to the upper mantle, a portion of the lower mantle is depleted also, or if only the upper mantle were depleted, an additional hidden high Nb/Ta reservoir must exist. Comparison of Nb/Ta systematics between early and late Archaean metabasalts supports the latter idea and indicates deeply subducted high Nb/Ta eclogite slabs could reside in the mantle transition zone or the lower mantle. Accumulation of such slabs appears to have commenced between 2.5 and 2.0 Ga. Regardless of these complexities of terrestrial Nb/Ta systematics, it is shown that the depleted mantle Nb/Th ratio is a very robust proxy for the amount of extracted continental crust, because the temporal evolution of this ratio is dominated by Th-loss to the continents and not Nb-retention in the mantle. We present a new parameterisation of the continental crust volume versus age curve that specifically explores the possibility of lithophile element loss to the core and storage of eclogite slabs in the transition zone. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Lichens meet some but not all of the criteria that must be fulfilled by inhabitants of Mars. They could withstand many aspects of the hostile environment especially if they live within the rocks as they do in the dry valleys of Antarctica. Lichens, however, are dual organisms and we have to presuppose the successful establishment of a variety of microorganisms on Mars and especially algae and fungi. To date, the evidence for the existence of microorganisms in Martian meteorites is controversial and there is no conclusive evidence of present life on the surface. In addition, if endolithic lichens have evolved on Mars and are alive today they would be subjected to a considerably more hostile environment than the extreme environments on Earth, which are regarded as at the limit of tolerance of present day lichens. The lack of liquid water over most of the surface and the problem of obtaining sufficient nitrogen resources are particular problems for Martian lichens. Further landings on Mars, scheduled for 2005 and future missions are likely to increase substantially our knowledge of the Martian surface and the possibilities for life by attempting to bring back samples of rock and minerals. In addition, the use of techniques such as Laser Raman technology and the development of gas chromatographic methods for use in space increase the probability that an answer to the question of whether lichens have existed on Mars will be obtained in the near future.
Resumo:
El arteterapia permite una aproximación creativa biográfica particularmente valiosa en la etapa final de la vida. La persona enferma presenta múltiples necesidades – físicas, emocionales, sociales y espirituales – que solo una atención holística puede pretender abarcar, tal como lo contempla la filosofía de los cuidados paliativos. El arteterapeuta integrado en el equipo interdisciplinar contribuye a aliviar y acompañar el sufrimiento del paciente y su familia. Se presentan aquí las bases teóricas y la metodología de la intervención, así como el marco sanitario en el cual se inscribe.