807 resultados para Mathematical representations
Resumo:
An application of image processing techniques to recognition of hand-drawn circuit diagrams is presented. The scanned image of a diagram is pre-processed to remove noise and converted to bilevel. Morphological operations are applied to obtain a clean, connected representation using thinned lines. The diagram comprises of nodes, connections and components. Nodes and components are segmented using appropriate thresholds on a spatially varying object pixel density. Connection paths are traced using a pixel-stack. Nodes are classified using syntactic analysis. Components are classified using a combination of invariant moments, scalar pixel-distribution features, and vector relationships between straight lines in polygonal representations. A node recognition accuracy of 82% and a component recognition accuracy of 86% was achieved on a database comprising 107 nodes and 449 components. This recogniser can be used for layout “beautification” or to generate input code for circuit analysis and simulation packages
Resumo:
Its mission is to promote Mathematics and Science in Africa and to provide a focal point for Mathematics university training in Africa. It offers scholarships for up to 50 students to come and study for a period of nine months. Of the 50 students, about 15 positions are reserved for females. In the 2006/2007 intake there were over 250 applicants. The students are housed and fed and their return travel from their home town is fully funded. Lecturers also stay at AIMS and share their meals with the students, so that a rapport quickly develops. The students are away from their families and friends for nine months and are absolutely committed to the discipline of Mathematics. When they first arrive, some of them have little ability in English but since all tuition is in English they quickly learn. Some find the transitions difficult but they all support one another and at the end of their time their English skills are very good. The students do a series of subjects that last for about three weeks each, consisting of 30 contact hours, as well as a thesis/project. Each course has a number of assignments associated with it and these get evaluated. AIMS has seven or eight teaching assistants who help with the tutorials, marking, advice, and who are a vital component of AIMS.
Resumo:
In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.
Resumo:
In automatic facial expression recognition, an increasing number of techniques had been proposed for in the literature that exploits the temporal nature of facial expressions. As all facial expressions are known to evolve over time, it is crucially important for a classifier to be capable of modelling their dynamics. We establish that the method of sparse representation (SR) classifiers proves to be a suitable candidate for this purpose, and subsequently propose a framework for expression dynamics to be efficiently incorporated into its current formulation. We additionally show that for the SR method to be applied effectively, then a certain threshold on image dimensionality must be enforced (unlike in facial recognition problems). Thirdly, we determined that recognition rates may be significantly influenced by the size of the projection matrix \Phi. To demonstrate these, a battery of experiments had been conducted on the CK+ dataset for the recognition of the seven prototypic expressions - anger, contempt, disgust, fear, happiness, sadness and surprise - and comparisons have been made between the proposed temporal-SR against the static-SR framework and state-of-the-art support vector machine.
Resumo:
Children’s picturebooks dealing with the topic of child sexual abuse first appeared in the early 1980s with the aim of addressing the need for age-appropriate texts to teach sexual abuse prevention concepts and to provide support for young children who may be at risk of or have already experienced sexual abuse. Despite the apparent potential of children’s picturebooks to convey child sexual abuse prevention concepts, very few studies have addressed the topic of child sexual abuse in children’s literature. Based on a larger study of 60 picturebooks about sexual child abuse published over the past 25 years, this paper critically examines eight picturebook representations of the perpetrators of sexual child abuse as a way to understand how potentially dangerous adults are explained to the young readers of these texts.
Resumo:
To address issues of divisive ideologies in the Mathematics Education community and to subsequently advance educational practice, an alternative theoretical framework and operational model is proposed which represents a consilience of constructivist learning theories whilst acknowledging the objective but improvable nature of domain knowledge. Based upon Popper’s three-world model of knowledge, the proposed theory supports the differentiation and explicit modelling of both shared domain knowledge and idiosyncratic personal understanding using a visual nomenclature. The visual nomenclature embodies Piaget’s notion of reflective abstraction and so may support an individual’s experience-based transformation of personal understanding with regards to shared domain knowledge. Using the operational model and visual nomenclature, seminal literature regarding early-number counting and addition was analysed and described. Exemplars of the resultant visual artefacts demonstrate the proposed theory’s viability as a tool with which to characterise the reflective abstraction-based organisation of a domain’s shared knowledge. Utilising such a description of knowledge, future research needs to consider the refinement of the operational model and visual nomenclature to include the analysis, description and scaffolded transformation of personal understanding. A detailed model of knowledge and understanding may then underpin the future development of educational software tools such as computer-mediated teaching and learning environments.
Resumo:
Goldin (2003) and McDonald, Yanchar, and Osguthorpe (2005) have called for mathematics learning theory that reconciles the chasm between ideologies, and which may advance mathematics teaching and learning practice. This paper discusses the theoretical underpinnings of a recently completed PhD study that draws upon Popper’s (1978) three-world model of knowledge as a lens through which to reconsider a variety of learning theories, including Piaget’s reflective abstraction. Based upon this consideration of theories, an alternative theoretical framework and complementary operational model was synthesised, the viability of which was demonstrated by its use to analyse the domain of early-number counting, addition and subtraction.
Resumo:
The multifractal properties of two indices of geomagnetic activity, D st (representative of low latitudes) and a p (representative of the global geomagnetic activity), with the solar X-ray brightness, X l , during the period from 1 March 1995 to 17 June 2003 are examined using multifractal detrended fluctuation analysis (MF-DFA). The h(q) curves of D st and a p in the MF-DFA are similar to each other, but they are different from that of X l , indicating that the scaling properties of X l are different from those of D st and a p . Hence, one should not predict the magnitude of magnetic storms directly from solar X-ray observations. However, a strong relationship exists between the classes of the solar X-ray irradiance (the classes being chosen to separate solar flares of class X-M, class C, and class B or less, including no flares) in hourly measurements and the geomagnetic disturbances (large to moderate, small, or quiet) seen in D st and a p during the active period. Each time series was converted into a symbolic sequence using three classes. The frequency, yielding the measure representations, of the substrings in the symbolic sequences then characterizes the pattern of space weather events. Using the MF-DFA method and traditional multifractal analysis, we calculate the h(q), D(q), and τ (q) curves of the measure representations. The τ (q) curves indicate that the measure representations of these three indices are multifractal. On the basis of this three-class clustering, we find that the h(q), D(q), and τ (q) curves of the measure representations of these three indices are similar to each other for positive values of q. Hence, a positive flare storm class dependence is reflected in the scaling exponents h(q) in the MF-DFA and the multifractal exponents D(q) and τ (q). This finding indicates that the use of the solar flare classes could improve the prediction of the D st classes.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
The process of learning symbolic Arabic digits in early childhood requires that magnitude and spatial information integrates with the concept of symbolic digits. Previous research has separately investigated the development of automatic access to magnitude and spatial information from symbolic digits. However, developmental trajectories of symbolic number knowledge cannot be fully understood when considering components in isolation. In view of this, we have synthesized the existing lines of research and tested the use of both magnitude and spatial information with the same sample of British children in Years 1, 2 and 3 (6-8 years of age). The physical judgment task of the numerical Stroop paradigm (NSP) demonstrated that automatic access to magnitude was present from Year 1 and the distance effect signaled that a refined processing of numerical information had developed. Additionally, a parity judgment task showed that the onset of the Spatial-Numerical Association of Response Codes (SNARC) effect occurs in Year 2. These findings uncover the developmental timeline of how magnitude and spatial representations integrate with symbolic number knowledge during early learning of Arabic digits and resolve inconsistencies between previous developmental and experimental research lines.
Resumo:
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds.
Resumo:
The ability to decode graphics is an increasingly important component of mathematics assessment and curricula. This study examined 50, 9- to 10-year-old students (23 male, 27 female), as they solved items from six distinct graphical languages (e.g., maps) that are commonly used to convey mathematical information. The results of the study revealed: 1) factors which contribute to success or hinder performance on tasks with various graphical representations; and 2) how the literacy and graphical demands of tasks influence the mathematical sense making of students. The outcomes of this study highlight the changing nature of assessment in school mathematics and identify the function and influence of graphics in the design of assessment tasks.
Resumo:
The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.