910 resultados para Marine Pliocene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are few previous references to fossil crustaceans for the Neogene marine layers of the Canary Islands (Spain). The Mio-Pliocene marine sedimentary layers in the eastern islands (Gran Canaria, Fuerteventura and Lanzarote) were previously characterised by the presence of numerous fossil fauna, mainly anthozoans and molluscs, which correspond to an equatorial-typepalaeoclimate, warmer than the present climate. This Mio-Pliocene transition dated between 9.3 and 4.1 Ma. In this paper, 12 fossil crustacean taxa are identified and classified, including decapods and barnacles: Balanus concavus Bronn, 1831, Balanus spongicola Brown, 1827, Balanus perforatus Bruguière, 1789, Chenolobia testudinaria Linnè, 1767, Tetraclita cf. rubescens Darwin, 1854, Callianassa matsoni Rathbun, 1935, Callianassa sp., Upogebia sp, Eriphia aff. verrucosa (Forskal, 1775) , Maja sp., Scylla michelini Milne-Edwards, 1861 and Ocypode sp. Some of these taxa mean new references for the Atlantic islands and the North African Atlantic and definitely enlarge the palaeographic distribution of Neogene crustaceans beyond the Mediterranean region, extending it to the North Atlantic. Particularly significant are the presence of Tetraclita cf. rubescens ,this being the first reported fossil occurrence of this barnacle outside the North America Pacific coasts, and Chenolobia testudinaria , indicating for the first time the existence of marine turtles in these islands during the Neogene. These results are coherent with previous research hypothesising the existence of a flow of surface water between the Pacific and Atlantic in the Mio-Pliocene transition (Central American Seaway, CAS) which explains the arrival of organisms, in larval stage, from Central America to the Canary Islands

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pacing of the marine carbon cycle by orbital forcing during the Pliocene and Pleistocene Ice Ages [past 2.5 million years (Myr)] is well known. As older deep-sea sediment records are being studied at greater temporal resolution, it is becoming clear that similar fluctuations in the marine carbon system have occurred throughout the late Mesozoic and Tertiary, despite the absence of large continental ice sheets over much of this time. Variations in both the organic and the calcium carbonate components of the marine carbon system seem to have varied cyclically in response to climate forcing, and carbon and carbonate time series appear to accurately characterize the frequency spectrum of ancient climatic change. For the past 35 Myr, much of the variance in carbonate content carries the “polar” signal of obliquity [41,000 years (41 kyr)] forcing. Over the past 125 Myr, there is evidence from marine sediments of the continued role of precessional (≈21 kyr) climatic cycles. Repeat patterns of sedimentation at about 100, 400, and 2,400 kyr, the modulation periods of precession, persistently enter into marine carbon cycle records as well. These patterns suggest a nonlinear response of climate and/or the sedimentation of organic carbon and carbonates to precessional orbital perturbations. Nonlinear responses of the carbon system may help to amplify relatively weak orbital insolation anomalies into more significant climatic perturbations through positive feedback effects. Nonlinearities in the carbon cycle may have transformed orbital-climatic cycles into long-wavelength features on time scales comparable to the residence times of carbon and nutrient elements in the ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed sedimentological and paleontological analysis of the uppermost Miocene (Messinian)–Pliocene boundary at the northern border of the Bajo Segura Basin, southeastern Spain, was carried out in order to describe the evolution of the regional paleocoastline during the Pliocene reflooding of the Mediterranean immediately after the sea-level fall related to the Messinian Salinity Crisis. Multiple trace fossils typical of firm- and hardgrounds were recognized, allowing identification of Glossifungites (two different types), Entobia, and Gnathichnus ichnofacies. Trace-fossil analysis showed that lithology and media consistency exerted considerable control on the development of the different ichnocoenoses and that there was a clear decrease in hydrodynamic energy from a coastal to a shallow-water shelf environment related to progressive sea-level rise. Ichnological and sedimentological data provide evidence that the definitive flooding of the Mediterranean was rapid and synchronous throughout the northern margin of the Bajo Segura Basin. The following model for the Pliocene transgression in the study area is therefore proposed: (1) the marine ingression penetrated along the incised paleovalleys carved as a consequence of the fall in sea level, where the first two Pliocene systems were deposited (P0–P1); (2) during the maximum flooding surface of the transgression, the sea overflowed the margins of the paleovalleys and extended throughout the entire northern margin of the basin; and (3) the third Pliocene system was deposited, forming the lower part of a highstand systems tract (P2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bajo Segura Basin (eastern Betic Cordillera) is a Mediterranean marginal basin where the Messinian Erosional Surface (MES), formed during the Messinian Salinity Crisis sea-level fall, is well developed. Overlying this major discontinuity the lower Pliocene transgressive sediments record the reflooding of the Mediterranean and the return to an open marine environment, the continental shelf being rebuilt after the Messinian erosion. The stratigraphic and biostratigraphic study of six sections allows two transgressive-regressive sequences filling the MES to be distinguished, correlated with the previously distinguished Mediterranean offshore seismic units. Ten calcareous nannofossil bioevents have been identified. The lower sequence can be dated according to nannofossil biozones NN12 to NN14 and the upper sequence by NN15 to NN16. The boundary between both lower Pliocene sedimentary sequences occur after the first common occurrence (FCO) of Discoaster asymmetricus found in the uppermost sediments of the lower sequence and before the first occurrence (FO) of Discoaster tamalis in the lowermost part of the upper sequence. Thus this sequence boundary can be estimated at between 4.1 and 4.0Ma ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 94 of the Deep Sea Drilling Project has provided a unique set of paleomagnetically dated cores, taken along a N-S transect in the North Atlantic. High deposition rates in the sediments, combined with the palaeomagnetic ages, have enabled existing planktonic foraminiferal zonations to be tested and a new zonation for the mid- to high latitudes to be erected. The PL zonation of Berggren (1973, 1977) is shown to be adequate as far north as 41°N, although both the LAD's of Globigerina nepenthes and Globorotalia margaritae occur earlier than in tropical regions. North of 41°N these two species have very diachronous LAD's, even though they are common during their range in the northern sites. The new zonation for the mid to high latitude North Atlantic is based on the FAD of G. margaritae, FAD of G. puncticulata, LAD of G. cf. crassula, LAD of N. atlantica, FAD of G. inflata and FAD of sinistrally coiled encrusted N. pachyderma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stratigraphic distribution, assemblage content, paleoecology and age of foraminifera recovered in fourteen of sixteen samples from the 5.63 m thick CRP-2 (Lithostratigraphic Unit 2.2) are discussed. LSU 2.2 comprises four discrete lithologic beds. The upward sequence is informally referred to as the lower sand bed, diamicton bed, middle sand bed, and upper sand bed and it is surmised that these four units are closely related in time. The lower sand bed (~1.5m), which overlies lower Miocene sediments and from which it is separated by the Ross Sea Unconformity, contains traces of recycled Miocene diatoms but is otherwise barren of biogenic material. The diamicton bed (~2.42 m) contains 21 species of benthic foraminifera, with assemblages consistently dominated by Cassidulinoides porrectus, Ammoelphidiella antarctica, Rosalina cf. globularis, Cibicides refulgens, and Ehrenbergina glabra. The overlying middle sand bed (~1.9 m) contains 13 species. with C. porrectus and E. glabra dominant and A. antarctica less common than in the underlying diamicton bed. The upper sand bed (~0.46 m) contains four species and very few tests. The diamicton bed and middle sand bed assemblages are considered to be near in situ thanatocoenoses; and sediments interpreted as marine in origin but influenced by hyposaline waters and nearby ice. Planktic taxa are absent, perhaps indicating the presence of tidewater glaciers, sea ice and/or hyposaline surface waters. The small assemblage in the upper sand bed is more problematic and may be recycled. On the basis of foraminifera in the diamicton and middle sand beds. LSU 2.2 is assigned to the Pliocene. The overlying diamicton in LSU 2.1 contains abundant Quaternary foraminifera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a 5.3-Myr stack (the ''LR04'' stack) of benthic d18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm. This is the first benthic delta18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene. We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the delta18O stack to a simple ice model based on 21 June insolation at 65 N. Stacked sedimentation rates provide additional age model constraints to prevent overtuning. Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 5.3 Myr and in the precession band for more than half of the record. The LR04 stack contains significantly more variance in benthic delta18O than previously published stacks of the late Pleistocene as the result of higher resolution records, a better alignment technique, and a greater percentage of records from the Atlantic. Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of delta18O from 2.7-1.6 Ma is primarily a deep-water temperature signal and that the phase of d18O precession response changed suddenly at 1.6 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 200 m long marine pollen record from ODP Site 658 (21°N, 19°W) reveals cyclic fluctuations in vegetation and continental climate in northwestern Africa from 3.7 to 1.7 Ma. These cycles parallel oxygen isotope stages. Prior to 3.5 Ma, the distribution of tropical forests and mangrove swamps reached Cape Blanc, 5°N of the present distribution. Between 3.5 and 2.6 Ma, forests occurred at this latitude during irregular intervals and nearly disappeared afterwards. Likewise, a Saharan paleoriver flowed continuously until isotope Stage 134 (3.35 Ma). When river discharge ceased, wind transport of pollen grains prevailed over fluvial transport. Pollen indicators of trade winds gradually increased between 3.3 and 2.5 Ma. A strong aridification of the climate of northwestern Africa occurred during isotope Stage 130 (3.26 Ma). Afterwards, humid conditions reestablised followed by another aridification around 2.7 Ma. Repetitive latitudinal shifts of vegetation zones ranging from wooded savanna to desert flora dominated for the first time between between 2.6 and 2.4 Ma as a response to the glacial stages 104, 100 and 98. Although climatic conditions, recorded in the Pliocene, were not as dry as those of the middle and Late Pleistocene, latitudinal vegetation shifts near the end of the Pliocene resembled those of the interglacial-glacial cycles of the Brunhes chron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopic and micropaleontological studies were made of selected sapropels (organic-rich sediments) deposited in the Mediterranean Sea during the last 5.0 m.y. to determine the processes responsible for their formation. Distinct isotopic and faunal changes occur across sapropels of late Pleistocene, early Pleistocene and latest Pliocene age, while smaller isotopic changes and more stable faunal assemblages are associated with the early and mid-late Pliocene sapropels. The large d18O depletions and euryhaline fauna associated with latest Pliocene-Pleistocene sapropels supports a density stratification model with a low salinity surface layer. In contrast, early Pliocene and mid-late Pliocene sapropels appear to have been formed as the result of sluggish circulation and low oxygen contents in bottom waters of the eastern Mediterranean due to the stable, warm climatic conditions of that time period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapidly deposited Thalassionema-Thalassiothrti pennate diatom oozes previously have been described in Upper Miocene-Lower Pliocene sediment beneath the frontal boundary of the eastern equatorial Pacific. Here we document a new occurrence of Thalassionema-Thalassiothrix ooze in Upper Miocene-Lower Pliocene sediment beneath the frontal boundary of the subarctic North Pacific. The ooze is a 6 m interval of siliceous sediment at Ocean Drilling Program (ODP) sites 885/886 that was rapidly deposited between approximately 5.0 and 5.9 Ma. Bulk sediment in this interval may contain greater than 85% pennate diatom tests. There are also abundant laminae and pockets that are composed entirely of Thalassionema and Thalassiothrix diatoms. The presence of a rapidly deposited ooze dominated by pennate diatoms indicates unusual past conditions in the overlying surface waters. Time coincident deposition of such oozes at two distinct frontal boundary locations of the Pacific suggests that the unusual surface water conditions were causally linked to large-scale oceanographic change. This same oceanographic change most likely involved (1) addition of nutrients to the ocean, or (2) redistribution of nutrients within the ocean. The occurrence and origin of pennate diatom oozes may be a key component to an integrative understanding of late Neogene paleoceanography and biogeochemical cycling.