946 resultados para MURINE PERITONEAL-MACROPHAGES
Resumo:
Os parasitos do gênero Leishmania apresentam variações de infectividade intra e inter específicas. Entretanto, são escassas as informações a respeito da infectividade das espécies de Leishmania do Novo Mundo, principalmente, daquelas encontradas na região Amazônica brasileira, onde, até o presente momento são conhecidas seis espécies pertencentes ao subgênero Viannia causadoras de LTA. Diante disso, o objetivo do presente trabalho foi investigar, in vitro, o comportamento da infectividade de 5 espécies de Leishmania do subgênero Viannia em macrófagos peritoneais de camundongos BALB/c e sua correlação com a produção de óxido nítrico pelos macrófagos infectados. Trinta cepas de Leishmania foram distribuídas em seis grupos iguais, de acordo com as espécies seguintes: I- L. (V) braziliensis/LCL, II- L. (V) braziliensis/LCM, III- L. (V) guyanensis, IV- L. (V) shawi, V -L. (V) naiffi e VI- L. (V) lainsoni. As cepas foram cultivadas em meio RPMI suplementado com 10% de soro bovino fetal e 1% de penicilina-gentamicina, até atingir a fase estacionária de cultivo, quando foram usadas para infectar macrófagos na proporção de 4 parasitos/macrófago. As culturas foram incubadas a 35°C e 5% de CO2 e após 24h, as lamínulas foram coradas com Giemsa para contagem do número de parasitos e determinação do índice de infecção, enquanto a concentração de NO (nitrito) foi calculada pelo método de Griess. Observou-se que as cepas de L. (V) braziliensis/LCM apresentaram o maior índice de infecção (385), sendo este significativamente maior (P<0,005) que as cepas de L. (V) braziliensis/LCL (264), L. (V) naiffi (215) e L. (V) lainsoni (272), porém, não significativamente maior que os índices das espécies L. (V) shawi (292) e L. (V) guyanensis (300). Quanto aos níveis de NO (nitrito), detectou-se maior concentração para a espécie L. (V) naiffi (4,1µM e menor concentração para as cepas de L. (V) braziliensis/LCM (2,15µM). As demais espécies tiveram concentrações de: L. (v:) lainsom (3,14µM), L. (V) shawi (2,96µM), L. (V) guyanensis (2,76µM) e cepas de L. (V) braziliensis/LCL (3,1µM). Diante do exposto, concluímos que cepas de L. (V) braziliensis/LCM são mais infectivas do que as demais espécies estudadas e, também, mais infectivas que cepas homólogas isoladas de casos clínicos de LCL. Além disso, observou-se menor infectividade da espécie L. (V) naiffi. Desse modo, notou-se que os níveis de NO produzidos pelos macrófagos infectados foram inversamente proporcionais ao grau do parasitismo.
Resumo:
A lobomicose é uma infecção subcutânea crônica, granulomatosa, causada pela implantação traumática do fungo Lacazia loboi nos tecidos cutâneo e subcutâneo. Ocorre predominantemente na região Amazônica e atinge qualquer grupo populacional. Histologicamente, observa-se reação inflamatória crônica caracterizada por intensa histiocitose e fibroplasia, abundante número de macrófagos, células gigantes multinucleadas do tipo corpo estranho e presença de considerável número de células leveduriformes. Os macrófagos são células fagocíticas que participam do reconhecimento e da resposta a patógenos através da fagocitose, da apresentação de antígenos aos linfócitos T e da produção de citocinas. As células de Langerhans (LC) são um grupo de Células dendríticas (CD) derivadas da medula óssea situadas principalmente em uma camada suprabasal da epiderme. Estudos envolvendo a interação fungo-hospedeiro na doença de Jorge Lobo são escassos. Assim, Este estudo é um passo importante para o melhor entendimento da biologia e patogenia do L. loboi, e para o estudo da imunopatologia da interação patógeno versus hospedeiro desta doença emergente e pouco conhecida. O objetivo do presente trabalho foi analisar a interação in vitro entre macrófagos peritoneais não ativados e/ou LC, isolados de camundongos BALB/c, com L. loboi recém-isolado de pacientes com doença de Jorge Lobo, bem como determinar os índices de infecção, fagocitose e fusão, e medir a produção das citocinas TNF-α, IL-4, IL-6, IL-10 e IL-12. Os resultados demonstraram que L. loboi é fagocitado por macrófagos, mas não por LC. O índice de infecção na interação entre macrófagos e L. loboi foi semelhante à interação entre macrófagos, LC e L. loboi em todos os tempos analisados. A média do número de fungos por macrófago também foi praticamente igual entre as interações e ao longo do tempo, variando de 1,2 a 1,6 fungos/macrófagos. Não houve a formação de células gigantes em macrófagos cultivados ou LC cultivadas isoladamente e em nenhum dos co-cultivos. Não houve diferença significante na produção de IL-4, IL-2 e IL-10 nas interações estudadas. Os níveis de TNF-α diminuem ao longo do tempo na interação entre macrófagos e L. loboi, enquanto a adição de LC induz aumento da produção de TNF-α, principalmente após 48 horas. LC modulam negativamente a produção de IL-6 por macrófagos e L. loboi também inibem essa produção por macrófagos isoladamente ou em co-cultivo com LC. L. loboi estimulam significativamente a produção de IL-12 por macrófagos co-cultivados com LC, mas não em LC ou macrófagos isoladamente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Species of the genus Qualea are used by the Brazilian public as a natural anti-inflammatory. Based on this evidence, we evaluated the effects of terpene fractions (βF and TF) obtained from Qualea multiflora on nitric oxide production (Griess assay), cytokines (IL-1, IL-10, IL-12, and TNF-a) and the transcription factor NF-κB by peritoneal macrophages. Since there is a relationship between inflammation and cancer, the cytotoxicity of βF and TF against mammary tumoural cell lineage, and macrophages was evaluated. Inhibition levels close to 90% of the production of NO, IL-1, IL-12 and TNF-a; about 32% of NF-κB; and a large stimulation of IL-10 production (close to the positive control) by peritoneal macrophages were observed in response to βF and TF which are correlated with anti-inflammatory activity. Additionally, the samples showed exceptional cytotoxic activity against tumoural cells but not against macrophages. Since anti-inflammatory activity is important in tumour inhibition, further examination of potential anti-cancerous activity of Qualea multiflora is warranted.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The macrophages are the first host cells that interact with the fungus Paracoccidioides brasiliensis, but the main mechanisms that regulate this interaction are not well understood. Because the role played by P. brasiliensis lipids in macrophage activation was not previously investigated, we aimed to assess the influence of diverse lipid fractions from P. brasiliensis yeasts in this process. The possible participation of TLR2 and TLR4 signaling was also evaluated using TLR2- and TLR4-defective macrophages. Four lipid-rich fractions were studied as follows: F1, composed by membrane phospholipids and neutral lipids, F2 by glycolipids of short chain, F3a by membrane glycoproteins anchored by glycosylphosphatidylinositol (GPI) groups, and F3b by glycolipids of long chain. All assayed lipid fractions were able to activate peritoneal macrophages and induce nitric oxide (NO) production. Importantly, the F1 and F3a fractions exerted opposite effects in the control of P. brasiliensis uptake and killing, but both fractions inhibited cytokines production. Furthermore, the increased NO production and expression of costimulatory molecules induced by F3a was shown to be TLR2 dependent although F1 used Toll-independent mechanisms. In conclusion, our work suggests that lipid components may play a role in the innate immunity against P. brasiliensis infection using Toll-dependent and independent mechanisms to control macrophage activation.
Resumo:
Melatonin has been reported to play a fundamental role in T-cell immunoregulation. Control of Trypanosome cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. The aim of this work was to evaluate the influence of exogenous melatonin treatment and the influences exerted by sexual hormones during the acute phase of the experimental Chagas' disease in rats. With melatonin treatment, orchiectomized animals (CMOR and IMOR) displayed the highest concentrations of IFN-gamma and TNF-alpha. On the 7th day post-infection, untreated and treated orchiectomized animals (IOR and IMOR) showed an enhanced number of peritoneal macrophages. Nitric oxide levels were also increased in untreated and treated orchiectomized (IOR and IMOR) when compared to the other groups, with or without LPS. Our data suggest that melatonin therapy associated with orchiectomy induced a stimulating effect on the immune response to the parasite. (c) 2012 Published by Elsevier Ltd.
Resumo:
The objective of this work was to determine the hematological parameters and the phagocytic capacity of peritoneal macrophages of fat snook related to sex, stage of gonadal maturation and seasonal cycle. Blood was collected from 135 animals (78 females and 57 males) and used for determinations of: erythrocyte number, hematocrit, hemoglobin, erythrocyte indices mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), total and differential leukocyte counts, and thrombocyte count. The phagocytic capacity and phagocytic index were determined after Saccharomyces cerevisiae inoculation in the peritoneal cavity of the animals. The hematological results according to sex showed that the erythrocyte, total leukocyte and thrombocyte counts were statistically higher in males than females, with the latter showing a higher MCV. Concerning to erythrocyte count, hematocrit and hemoglobin concentration analyzed separately by sex and stage of gonadal maturation, males were found to have significantly elevated values in the mature stage and decreased levels in the resting stage. The results of the erythrocyte and leukocyte series, thrombocytes and phagocytic activity related to seasonal cycle showed significant differences in both sexes, where hematocrit and hemoglobin concentration were lower in winter and higher in the other seasons, mean corpuscular volume was higher in the summer and lower in the winter and fall, total leukocytes and thrombocytes lower in the spring and higher in the fall, lymphocytes low in the winter and summer and high in the spring and phagocytic capacity and phagocytic index high in the summer and low in the winter and fall. The results showed that the hematological values in males are statistically higher than those in females, the erythrocyte values in males increase with the progression of gonadal maturation and that winter is the season of the year least favorable for hematological and phagocytic responses for survival of fat snook kept in captivity. The parameters studied could be utilized in the evaluation of the health status of this species in captivity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.
Resumo:
Bothrops atrox is responsible for most accidents involving snakes in the Brazilian Amazon and its venom induces serious systemic and local effects. The local effects are not neutralized effectively by commercial antivenoms, resulting in serious sequelae in individuals bitten by this species. This study investigates the local inflammatory events induced in mice by B. atrox venom (Bay), such as vascular permeability, leukocyte influx and the release of important inflammatory mediators such as cytokines, eicosanoids and the chemokine CCL-2, at the injection site. The effect of Bay on cyclooxygenase (COX-1 and COX-2) expression was also investigated. The results showed that intraperitoneal (i.p.) injection of BaV promoted a rapid and significant increase in vascular permeability, which reached a peak 1 h after venom administration. Furthermore, BaV caused leukocyte infiltration into the peritoneal cavity between 1 and 8 h after i.p. injection, with mononuclear leukocytes (MNs) predominating in the first 4 h, and polymorphonuclear leukocytes (PMNs) in the last 4 h. Increased protein expression of COX-2, but not of COX-1, was detected in leukocytes recruited in the first and fourth hours after injection of BaV. The venom caused the release of eicosanoids PGD(2), PGE(2), TXA(2) and LTB4, cytokines TNF-alpha, IL-6, IL-10 and IL-12p70, but not IFN-gamma, and chemokine CCL-2 at different times. The results show that Bay is able to induce an early increase in vascular permeability and a leukocyte influx to the injection site consisting mainly of MNs initially and PMNs during the later stages. These phenomena are associated with the production of cytokines, the chemokine CCL-2 and eicosanoids derived from COX-1 and COX-2. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.
Resumo:
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The Delta sebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA:GFP (SebA:green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the Delta sebA mutant. The A. fumigatus Delta sebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the Delta sebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.