231 resultados para MSCs
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Several studies with mesenchymal stem cells (MSCs) have been developed in many species because of its ability to differentiate into other mesoderm lineages, capacity of self-regeneration, low immunogenicity, paracrine, anti-inflamatory, immunomodulatory and antiapoptotic effects which make then a promissory source to be used in therapeutic strategies. The aim of this study is to report the technique of harvest of bone marrow (BM) in the coxal tuberosity (CT) of buffaloes. For this, the animals were selected, identified and contained in a stock. Then trichotomy was performed in the region corresponding to the CT. After identifying the anatomic site it was performed antisepsis, local anesthetic block and introduction of a myelogram's needle (Lang(R)) for BM aspiration. Once the needle was firmly fixed in the CT, the mandril was removed and proceeded to BM aspiration with a syringe (20 mL) containing 1 ml of heparin at 1000 IU / mL and 1 mL of PBS. After the collection, each sample collected was manually homogenized, identified and referred to the LRACT - FMVZ / UNESP-BRAZIL for the correct processing. The anatomical site tested showed to be an alternative site of harvest of BM once provided the appropriate isolation and culture of the mononuclear fraction. Moreover, the procedure was performed without difficulty and with great security. Based on this, it can be conclude that CT is an excellent anatomical site for isolation and culture of MSCs and the proposed technique is viable and feasible to be held in buffaloes.
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology and can differentiate into bone, cartilage and fat cells. Therapeutic potential of MSCs have been studied in experimental models, such as rabbit, in Laboratory of Cell Engineering of Botucatu. However, no specific markers have been reported for expanded rabbit MSCs, which hampers the isolation of pure MSC populations by immunophenotypic characterization. Thus, the objective of this study was to produce monoclonal antibodies (mAbs) to rabbit MSCs. MSCs derived from rabbit bone marrow (BM) were isolated, cultured, expanded ex vivo, and immunized into three BALB/c mices, and spleen cells subsequently harvested were used to generate hibridoma cell lines secreting antibodies against MSCs. Hybridoma cells were screened by flow cytometry and antibody-producing cells were subjected to subsequent rounds of retests. MSC1-160 obtained the best positivity for IgG expression and was cloned by limiting dilutions and micromanipulation. Ascitic fluid from ten best clones was purified by affinity chromatography in Protein A-sepharose CL-4B column and purification control was performed by electrophoresis in agarose gels. The purified IgG were tested against rabbit MSCs, obtaining high positivity by flow Cytometry. In conclusion, we developed 10 mAbs, MSC1-160 A20, A30, A41, A47, A55, A60, A63, A69, A81, and A82, that recognize rabbit MSC cell surface antigens showing potential for immunophenotypic characterization of rabbit MSC cell lines
Resumo:
Mesenchymal stem cells (MSCs) are adult multipotent cells with fibroblastoid morphology and adherent to plastic. Furthermore, they can be obtained from different sources. Besides bone marrow, these cells are taken from umbilical cord blood, umbilical vein, saphenous vein, peripheral blood, arteries, liver and fetal pancreas, placenta, dental pulp and adipose tissue. MSCs derived from adipose tissue are important because of the abundant number of cells that can be obtained from this tissue, easy access and little discomfort to the patient. This study compared two techniques for obtaining MSCs from adipose tissue: mechanical dissociation (MD) and enzymatic digestion (ED). We also analyzed the inter-species cross-reactions using commercial monoclonal antibodies directed against surface antigens of stem cells from different species: mouse, horse, rabbit, monkey and human. We found that MD technique is favorable in relation to ED within 15 days of culture, and ED is more efficient in the first days of culture. The data also showed that MD causes less damage to cellular DNA. About inter-species cross-reactions, the monoclonal antibody A69 directed against stem cells from rabbits, which can be used in veterinary medicine, particularly in research involving horses
Resumo:
Muscular dystrophy refers to a group of more than 30 genetical disorders characterized by progressive weakness and degeneration of the skeletal muscle. No effective therapy is available at present. Recent studies have reported that the transplantation of stem cells can offer an important potential therapy for genetic diseases. Adult bone marrow mesenchymal stem cells have been identified as a nonhematopoietic stem cell population capable of self-renewal with the ability to differentiate into many cell lineages, including bone, fat, cartilage and connective tissue. Because of their similarity with muscle progenitor cells, when they are injected in affected individuals, they are able to migrate into areas of skeletal muscle degeneration and participate in the regeneration process. The adipose tissue represents an alternative source of MSCs that, as the MSCs derived from bone marrow, are capable of in vitro differentiation into osteogenic, adipogenic, myogenic and chondrogenic lineages. The objective of this project is to investigate the “in vitro” myogenic potential of mesenchymal stem cells derived from murine bone marrow and adipose tissue. Four experimental groups were analyzed: mice from lineages Lama2dy-2J/J and C57black and, C2C12 lineage cells and transformed C2C12 expressing the eGFP protein. MSCs cultures were obtained by flushing the bone marrow femurs and tibials with α-MEM or by the subcutaneous and inguinal fat from the mice. Their characterization was done by flow cytometry and in vitro differentiation. Muscle differentiation was studied through the analysis of the expression of transcriptional factors involved in muscle differentiation and/or the presence and amount of specific proteins from muscle differentiated cell. The pluripotency from bone marrow MSCs of the two lineages was evidenced and, in the muscular differentiation... (Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Animal - FMVA