816 resultados para MAGNESIUM-CHLORIDE
Resumo:
Clinical utility of biodegradable magnesium implants is undermined by the untimely degradation of these materials in vivo. Their high corrosion rate leads to loss of mechanical integrity, peri–implant alkalization and localised accumulation of hydrogen gas. Biodegradable coatings were produced on pure magnesium using RF plasma polymerisation. A monoterpene alcohol with known anti-inflammatory and antibacterial properties was used as a polymer precursor. The addition of the polymeric layer was found to reduce the degradation rate of magnesium in simulated body fluid. The in vitro studies indicated good cytocompatibility of non-adherent THP–1 cells and mouse macrophage cells with the polymer, and the polymer coated sample. The viability of THP–1 cells was significantly improved when in contact with polymer encapsulated magnesium compared to unmodified samples. Collectively, these results suggest plasma enhanced polymer encapsulation of magnesium as a suitable method to control degradation kinetics of this biomaterial.
Resumo:
A novel type of magnesium-air primary cell has been evolved which employs non-polluting and abundantly available materials. The cell is based on the scheme Mg/Mg(NO3)2, NaNO2, H20/Q(C). The magnesium anode utilization is about 90% at a current density of 20 mAcm -2. The anode has been shown to exhibit a low open-circuit corrosion, a relatively uniform pattern of corrosion and a low negative difference effect in the electrolyte developed above as compared to the conventional halide or perchlorate electrolytes. In the usual air-depolarized mode of operation, the cell has been found to be capable of continuous discharge over several months at a constant cell voltage of about 1 V and a current density of 1 mAcm -2 at the cathode. The long service-life capability arises from the formation of a protective film on the porous carbon cathode and fast sedimentation of the anodic product (magnesium hydroxide) in the electrolyte. The cell has a shelf-life in the activated state of about a year due to the low open-circuit corrosion of the anode. These favourable features suggest the practical feasibility of developing economical, long-life, non-reserve magnesium-air ceils for diverse applications using magnesium anodes with a high surface area and porous carbon-air electrodes.
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
The reactions of sulphuryl fluoride, sulphuryl chlorofluoride and sulphuryl chloride with the amines tert-butylamine, benzylamine, piperidine, pyridine and quinoline have been investigated. The primary and secondary amines react with the elimination of hydrogen halides and formation of S---N bonds whereas tertiary amines form 1:2 adducts.
Resumo:
Grignard reaction of ethyl 3-(3,5-dimethoxyphenyl)-propionate (4) followed by cyclodehydration of the carbinol (5) with conc H2SO4 gave 4,6-dimethoxy-3,3-dimethylindane (6). Oxidation of the indane (6) with CrO3-pyridine complex in methylene chloride gave 4,6-dimethoxy-3,3-dimethylindan-1- one (1) in high yield. Conjugate addition of methyl magnesium iodide to methyl α-cyano-β-methyl-3,5-dimethoxycinnamate (11), prepared from 3,5-dimethoxyacetophenone (10) by Knoevenagel condensation, resulted in methyl 2-cyano-3-(3,5-dimethoxyphenyl)-3,3-dimethylpropionate (12). Refluxing the ester (12) with aq DMSO containing sodium chloride gave the corresponding nitrile (15) which underwent Höesch reaction to yield 5,7-dimethoxy-3,3-dimethylindan-1-one (2).
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
The text is divided into three parts; Properties, Application and Safety of Ammonium Nitrate (AN) based fertilisers. In Properties, the structures and phase transitions of ammonium and potassium nitrate are reviewed. The consequences of phase transitions affect the proper use of fertilisers. Therefore the products must be stabilised against the volume changes and consequent loss of bulk density and hardness, formation of dust and finally caking of fertilisers. The effect of different stabilisers is discussed. Magnesium nitrate, ammonium sulphate and potassium nitrate are presented as a good compromise. In the Application part, the solid solutions in the systems (K+,NH4+)NO3- and (NH4+,K+)(Cl-,NO3-) are presented based on studies made with DSC and XRD. As there are clear limits for solute content in the solvent lattice, a number of disproportionation transitions exist in these process phases, e.g., N3 (solid solution isomorphous to NH4NO3-III) disproportionates to phases K3 (solid solution isomorphous to KNO3-III) and K2 (solid solution isomorphous to KNO3-II). In the crystallisation experiments, the formation of K3 depends upon temperature and the ratio K/(K+NH4). The formation of phases K3, N3, and K2 was modelled as a function of temperature and the mole ratios. In introducing chlorides, two distinct maxima for K3 were found. Confirmed with commercial potash samples, the variables affecting the reaction of potassium chloride with AN are the particle size, time, temperature, moisture content and amount of organic coating. The phase diagrams obtained by crystallisation studies were compared with a number of commercial fertilisers and, with regard to phase composition, the temperature and moisture content are critical when the formation and stability of solid solutions are considered. The temperature where the AN-based fertiliser is solidified affects the amount of compounds crystallised at that point. In addition, the temperature where the final moisture is evaporated affects the amount and type of solid solution formed at this temperature. The amount of remaining moisture affects the stability of the K3 phase. The K3 phase is dissolved by the moisture and recrystallised into the quantities of K3, which is stable at the temperature where the sample is kept. The remaining moisture should not be free; it should be bound as water in the final product. The temperatures during storage also affect the quantity of K3 phase. As presented in the figures, K3 phase is not stable at temperatu¬res below 30 °C. If the temperature is about 40 °C, the K3 phase can be formed due to the remaining moisture. In the Safety part, self-sustaining decomposition (SSD), oxidising and energetic properties of fertilisers are discussed. Based on the consequence analysis of SSD, early detection of decomposition in warehouses and proper temperature control in the manufacturing process is important. SSD and oxidising properties were found in compositions where K3 exists. It is assumed that potassium nitrate forms a solid matrix in which AN can decompose. The oxidising properties can be affected by the form of the product. Granular products are inherently less oxidising. Finally energetic properties are reviewed. The composition of the fertiliser has an importance based on theoretical calculations supported by experimental studies. Materials such as carbonates and sulphates act as diluents. An excess of ammonium ions acts as a fuel although this is debatable. Based on the experimental work, the physical properties have a major importance over the composition. A high bulk density is of key importance for detonation resistance.
Resumo:
Abstract is not available.
Resumo:
The stress-optical coefficients C = (n3/2) (q11−q12) and C′ = (n3/2)q44 of RbCl and RbBr crystals have been measured at room temperature (26°C) over the wave length range 5750-2500 A.
Resumo:
Abstract is not available.
Resumo:
Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana) leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.