854 resultados para MAGNESIUM ALLOY
Resumo:
Dry sliding tests were performed on as-cast magnesium alloys Mg97Zn1Y2 and AZ91 using a pin-on-disc configuration. Coefficients of friction and wear rates were measured within a load range of 20-380 and 20-240 N at a sliding velocity of 0.785 m/s. X-ray differactometer, scanning electron microscopy, tensile testing machine were used to characterize the microstructures and mechanical properties of Mg97Zn1Y2 alloy and AZ91 alloy. Worn surface morphologies of Mg97Zn1Y2 and AZ91 were examined using scanning electron microscopy.
Resumo:
The Mg-8.31Gd-1.12Dy-0.38Zr (mass%) alloy was prepared by casting technology, and the microstructure, age hardening behavior and mechanical property have been investigated. It is noted that the alpha-Mg and the different Mg-RE (RE = Gd/Dy) compounds are subsistent in the as-cast and annealed state samples. The age hardening behavior is observed during the investigated temperature range, and the alloy exhibits high Vickers hardness, excellent ultimate tensile strength and yield strength at peak hardness.
Resumo:
The Mg-8Gd-0.6Zr-xEr (x = 1, 3 and 5 mass%) alloys were prepared by casting technology, and the microstructures, age hardening behaviors and mechanical properties of alloys have been investigated. Microstructures of the alloys are characterized by the presence of rosette-shaped equiaxed grains. The age hardening behaviors and the tensile properties are enhanced by adding Er element. The maximum aged hardness of Mg-8Gd-0.6Zr-5Er alloy is 97, it is nearly 1.24 times higher than that of Er-free alloy.
Resumo:
Die-cast Mg-4Al-0.4Mn-xNd(x = 0, 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully and influences of Nd on the microstructure, mechanical properties and corrosion behavior of the Mg-4Al-0.4Mn alloy have been investigated. The results showed that with the addition of Nd binary Al2Nd phase and Al11Nd3 phase. which mainly aggregated along the grain boundaries, were formed, and the relative ratio of above two phases was in correlation with the Nd content in the alloy. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content. It was found that due to the addition of Nd both the tensile properties and corrosion resistance were improved substantially.
Resumo:
In the present work, the edge-to-edge matching model has been introduced to predict the orientation relationships (OR) between the MgZn2 phase which has hexagonal close packed (HCP) structure and the HCP a-Mg matrix. Based on the crystal structures and lattice parameters only, the model has predicted the two most preferred ORs and they are: (1) [1 1 2 3](alpha-Mg) vertical bar vertical bar]1 1 2 3](alpha-Mg), (0 0 0 1)(alpha-Mg) 0.27 degrees from (0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 26.18 degrees from (1 1 2 2)(MgZn2), (2) [1 0 1 0](alpha-Mg),vertical bar vertical bar[1 1 2 0](MgZn2), (0 0 0 1)(alpha-Mg) vertical bar vertical bar(0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 3.28 degrees from ( 1 1 2 2)(MgZn2). Four experimental ORs have been reported in the alpha-Mg/MgZn2 system, and the most frequently reported one is ideally the OR (2). The other three experimental ORs are near versions of the OR (2). The habit plane of the OR (2) has been predicted and it agrees well with the experimental results.
Resumo:
Mg-7 mass%Gd-x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg-7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg-7Gd-5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 degrees C, respectively, which is about 1.8 times as high as the Mg-7Gd binary alloy. When x is more than 3, the amount of Mg-5 (Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the beta-Mg-5(Gd,Y) precipitate.
Resumo:
Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy. The main phases in the as cast alloys were alpha-Mg and tau-Mg-32 (Al, Zn)(49), and Al4Ce phase was found in the alloys contained more than 1.39% Ce. The addition of Ce improved the mechanical properties of the alloys. The strengthening mechanism was attributed to grain refinement and compound reinforced.
Resumo:
Mg-20Gd(%, mass fraction) samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated alpha-Mg solid solution phase and the as-east ingot mainly contains alpha-Mg solid solution and Mg5Gd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2%. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.
Resumo:
MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.
Resumo:
The Inoue procedure is used to study the influence of Cr and Cu elements, jointly or individually, on the matrix decomposition of quenched Al-Zn-Mg alloys. The addition of copper and copper with chromium does not significantly change the limits of the temperatures of formation of Guinier-Preston zone and the range of the matrix decomposition. The control of the vacancy concentration in the alloys by different heat treatments and the addition of certain elements such as copper and chromium seems to play an important role in the nucleation rate and the kinetics of phase transformations.
Resumo:
The strength decrease in magnesium implants was studied in vitro and in vivo, with and without a protective plasmaelectrolytic coating. In vivo, degradation was examined by implanting rectangular plates on top of the nasal bone of miniature pigs. The presence of gas pockets in the soft tissue surrounding the implants was evaluated with intermediate X-rays and computed X-ray tomography scans before euthanasia. After 12 and 24weeks of in vivo degradation, the large rectangular plates were removed and mechanically tested in three-point bending. In vitro, identical plates were immersed in simulated body fluid for 4, 8 and 12weeks. In vitro and in vivo results showed that onset of gas release can be delayed by the plasmaelectrolytic coating. Mass loss and strength retention during in vivo degradation is about four times slower than during in vitro degradation for the chosen test conditions. Despite the slow degradation of the investigated WE43 alloy, the occurrence of gas pockets could not be completely avoided. Nevertheless, uniformity of degradation and reliable strength retention make this alloy a prime candidate for the use of magnesium in cranio-maxillofacial surgery.
Resumo:
En los últimos años ha habido una fuerte tendencia a disminuir las emisiones de CO2 y su negativo impacto medioambiental. En la industria del transporte, reducir el peso de los vehículos aparece como la mejor opción para alcanzar este objetivo. Las aleaciones de Mg constituyen un material con gran potencial para el ahorro de peso. Durante la última década se han realizado muchos esfuerzos encaminados a entender los mecanismos de deformación que gobiernan la plasticidad de estos materiales y así, las aleaciones de Mg de colada inyectadas a alta presión y forjadas son todavía objeto de intensas campañas de investigación. Es ahora necesario desarrollar modelos que contemplen la complejidad inherente de los procesos de deformación de éstos. Esta tesis doctoral constituye un intento de entender mejor la relación entre la microestructura y el comportamiento mecánico de aleaciones de Mg, y dará como resultado modelos de policristales capaces de predecir propiedades macro- y microscópicas. La deformación plástica de las aleaciones de Mg está gobernada por una combinación de mecanismos de deformación característicos de la estructura cristalina hexagonal, que incluye el deslizamiento cristalográfico en planos basales, prismáticos y piramidales, así como el maclado. Las aleaciones de Mg de forja presentan texturas fuertes y por tanto los mecanismos de deformación activos dependen de la orientación de la carga aplicada. En este trabajo se ha desarrollado un modelo de plasticidad cristalina por elementos finitos con el objetivo de entender el comportamiento macro- y micromecánico de la aleación de Mg laminada AZ31 (Mg-3wt.%Al-1wt.%Zn). Este modelo, que incorpora el maclado y tiene en cuenta el endurecimiento por deformación debido a las interacciones dislocación-dislocación, dislocación-macla y macla-macla, predice exitosamente las actividades de los distintos mecanismos de deformación y la evolución de la textura con la deformación. Además, se ha llevado a cabo un estudio que combina difracción de electrones retrodispersados en tres dimensiones y modelización para investigar el efecto de los límites de grano en la propagación del maclado en el mismo material. Ambos, experimentos y simulaciones, confirman que el ángulo de desorientación tiene una influencia decisiva en la propagación del maclado. Se ha observado que los efectos no-Schmid, esto es, eventos de deformación plástica que no cumplen la ley de Schmid con respecto a la carga aplicada, no tienen lugar en la vecindad de los límites de baja desorientación y se hacen más frecuentes a medida que la desorientación aumenta. Esta investigación también prueba que la morfología de las maclas está altamente influenciada por su factor de Schmid. Es conocido que los procesos de colada suelen dar lugar a la formación de microestructuras con una microporosidad elevada, lo cuál afecta negativamente a sus propiedades mecánicas. La aplicación de presión hidrostática después de la colada puede reducir la porosidad y mejorar las propiedades aunque es poco conocido su efecto en el tamaño y morfología de los poros. En este trabajo se ha utilizado un enfoque mixto experimentalcomputacional, basado en tomografía de rayos X, análisis de imagen y análisis por elementos finitos, para la determinación de la distribución tridimensional (3D) de la porosidad y de la evolución de ésta con la presión hidrostática en la aleación de Mg AZ91 (Mg- 9wt.%Al-1wt.%Zn) colada por inyección a alta presión. La distribución real de los poros en 3D obtenida por tomografía se utilizó como input para las simulaciones por elementos finitos. Los resultados revelan que la aplicación de presión tiene una influencia significativa tanto en el cambio de volumen como en el cambio de forma de los poros que han sido cuantificados con precisión. Se ha observado que la reducción del tamaño de éstos está íntimamente ligada con su volumen inicial. En conclusión, el modelo de plasticidad cristalina propuesto en este trabajo describe con éxito los mecanismos intrínsecos de la deformación de las aleaciones de Mg a escalas meso- y microscópica. Más especificamente, es capaz de capturar las activadades del deslizamiento cristalográfico y maclado, sus interacciones, así como los efectos en la porosidad derivados de los procesos de colada. ---ABSTRACT--- The last few years have seen a growing effort to reduce CO2 emissions and their negative environmental impact. In the transport industry more specifically, vehicle weight reduction appears as the most straightforward option to achieve this objective. To this end, Mg alloys constitute a significant weight saving material alternative. Many efforts have been devoted over the last decade to understand the main mechanisms governing the plasticity of these materials and, despite being already widely used, high pressure die-casting and wrought Mg alloys are still the subject of intense research campaigns. Developing models that can contemplate the complexity inherent to the deformation of Mg alloys is now timely. This PhD thesis constitutes an attempt to better understand the relationship between the microstructure and the mechanical behavior of Mg alloys, as it will result in the design of polycrystalline models that successfully predict macro- and microscopic properties. Plastic deformation of Mg alloys is driven by a combination of deformation mechanisms specific to their hexagonal crystal structure, namely, basal, prismatic and pyramidal dislocation slip as well as twinning. Wrought Mg alloys present strong textures and thus specific deformation mechanisms are preferentially activated depending on the orientation of the applied load. In this work a crystal plasticity finite element model has been developed in order to understand the macro- and micromechanical behavior of a rolled Mg AZ31 alloy (Mg-3wt.%Al-1wt.%Zn). The model includes twinning and accounts for slip-slip, slip-twin and twin-twin hardening interactions. Upon calibration and validation against experiments, the model successfully predicts the activity of the various deformation mechanisms and the evolution of the texture at different deformation stages. Furthermore, a combined three-dimensional electron backscatter diffraction and modeling approach has been adopted to investigate the effect of grain boundaries on twin propagation in the same material. Both experiments and simulations confirm that the misorientation angle has a critical influence on twin propagation. Non-Schmid effects, i.e. plastic deformation events that do not comply with the Schmid law with respect to the applied stress, are absent in the vicinity of low misorientation boundaries and become more abundant as misorientation angle increases. This research also proves that twin morphology is highly influenced by the Schmid factor. Finally, casting processes usually lead to the formation of significant amounts of gas and shrinkage microporosity, which adversely affect the mechanical properties. The application of hydrostatic pressure after casting can reduce the porosity and improve the properties but little is known about the effects on the casting’s pores size and morphology. In this work, an experimental-computational approach based on X-ray computed tomography, image analysis and finite element analysis is utilized for the determination of the 3D porosity distribution and its evolution with hydrostatic pressure in a high pressure diecast Mg AZ91 alloy (Mg-9wt.%Al-1wt.%Zn). The real 3D pore distribution obtained by tomography is used as input for the finite element simulations using an isotropic hardening law. The model is calibrated and validated against experimental stress-strain curves. The results reveal that the pressure treatment has a significant influence both on the volume and shape changes of individuals pores, which have been precisely quantified, and which are found to be related to the initial pore volume. In conclusion, the crystal plasticity model proposed in this work successfully describes the intrinsic deformation mechanisms of Mg alloys both at the mesoscale and the microscale. More specifically, it can capture slip and twin activities, their interactions, as well as the potential porosity effects arising from casting processes.
Resumo:
"Work performed under Contract No. AT(30-1)-647"--p.2 of cover.
Resumo:
The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.