952 resultados para Linear models (Statistics)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We assessed decision-making capacity and emotional reactivity in 20 patients with multiple sclerosis (MS) and in 16 healthy subjects using the Gambling Task (GT), a model of real-life decision making, and the skin conductance response (SCR). Demographic, neurological, affective, and cognitive parameters were analyzed in MS patients for their effect on decision-making performance. MS patients persisted longer (slope, -3.6%) than the comparison group (slope, -6.4%) in making disadvantageous choices as the GT progressed (p < 0.001), suggesting significant slower learning in MS. Patients with higher Expanded Disability Status Scale scores (EDSS >2.0) showed a different pattern of impairment in the learning process compared with patients with lower functional impairment (EDSS </=2.0). This slower learning was associated with impaired emotional reactivity (anticipatory SCR 3.9 vs 6.1 microSiemens [microS] for patients vs the comparison group, p < 0.0001; post-choice SCR 3.9 vs 6.2 microS, p < 0.0001), but not with executive dysfunction. Impaired emotional dimensions of behavior (assessed using the Dysexecutive Questionnaire, p < 0.002) also correlated with slower learning. Given the considerable consequences that impaired decision making can have on daily life, we suggest that this factor may contribute to handicap and altered quality of life secondary to MS and is dependent on emotional experience. Ann Neurol 2004.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: The Healthy Heart Kit (HHK) is a risk management and patient education kit for the prevention of cardiovascular disease (CVD) and the promotion of CV health. There are currently no published data examining predictors of HHK use by physicians. The main objective of this study was to examine the association between physicians' characteristics (socio-demographic, cognitive, and behavioural) and the use of the HHK. METHODS: All registered family physicians in Alberta (n=3068) were invited to participate in the "Healthy Heart Kit" Study. Consenting physicians (n=153) received the Kit and were requested to use it for two months. At the end of this period, a questionnaire collected data on the frequency of Kit use by physicians, as well as socio-demographic, cognitive, and behavioural variables pertaining to the physicians. RESULTS: The questionnaire was returned by 115 physicians (follow-up rate = 75%). On a scale ranging from 0 to 100, the mean score of Kit use was 61 [SD=26]. A multiple linear regression showed that "agreement with the Kit" and the degree of "confidence in using the Kit" was strongly associated with Kit use, explaining 46% of the variability for Kit use. Time since graduation was inversely associated with Kit use, and a trend was observed for smaller practices to be associated with lower use. CONCLUSION: Given these findings, future research and practice should explore innovative strategies to gain initial agreement among physicians to employ such clinical tools. Participation of older physicians and solo-practitioners in this process should be emphasized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim To assess the geographical transferability of niche-based species distribution models fitted with two modelling techniques. Location Two distinct geographical study areas in Switzerland and Austria, in the subalpine and alpine belts. Methods Generalized linear and generalized additive models (GLM and GAM) with a binomial probability distribution and a logit link were fitted for 54 plant species, based on topoclimatic predictor variables. These models were then evaluated quantitatively and used for spatially explicit predictions within (internal evaluation and prediction) and between (external evaluation and prediction) the two regions. Comparisons of evaluations and spatial predictions between regions and models were conducted in order to test if species and methods meet the criteria of full transferability. By full transferability, we mean that: (1) the internal evaluation of models fitted in region A and B must be similar; (2) a model fitted in region A must at least retain a comparable external evaluation when projected into region B, and vice-versa; and (3) internal and external spatial predictions have to match within both regions. Results The measures of model fit are, on average, 24% higher for GAMs than for GLMs in both regions. However, the differences between internal and external evaluations (AUC coefficient) are also higher for GAMs than for GLMs (a difference of 30% for models fitted in Switzerland and 54% for models fitted in Austria). Transferability, as measured with the AUC evaluation, fails for 68% of the species in Switzerland and 55% in Austria for GLMs (respectively for 67% and 53% of the species for GAMs). For both GAMs and GLMs, the agreement between internal and external predictions is rather weak on average (Kulczynski's coefficient in the range 0.3-0.4), but varies widely among individual species. The dominant pattern is an asymmetrical transferability between the two study regions (a mean decrease of 20% for the AUC coefficient when the models are transferred from Switzerland and 13% when they are transferred from Austria). Main conclusions The large inter-specific variability observed among the 54 study species underlines the need to consider more than a few species to test properly the transferability of species distribution models. The pronounced asymmetry in transferability between the two study regions may be due to peculiarities of these regions, such as differences in the ranges of environmental predictors or the varied impact of land-use history, or to species-specific reasons like differential phenotypic plasticity, existence of ecotypes or varied dependence on biotic interactions that are not properly incorporated into niche-based models. The lower variation between internal and external evaluation of GLMs compared to GAMs further suggests that overfitting may reduce transferability. Overall, a limited geographical transferability calls for caution when projecting niche-based models for assessing the fate of species in future environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma and cerebrospinal fluid (CSF) concentrations of the enantiomers of citalopram (CIT), its N-demethylated metabolite demethylcitalopram (DCIT) and its deaminated metabolite citalopram propionic acid derivative (CIT-PROP) were measured in plasma and CSF in 22 depressed patients after a 4-week treatment with 40 mg/d citalopram, which was preceded by a 1-week washout period. CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured at baseline and after the 4-week CIT medication period. Patients were assessed clinically, using the Hamilton Depression Rating Scale (21-item HAM-D): at baseline and then at weekly intervals. CSF concentrations of S-CIT and R-CIT were 10.6 +/- 4.3 and 20.9 +/- 6 ng/mL, respectively, and their CSF/plasma ratios were 52% +/- 9% and 48% +/- 6%, respectively. The CIT treatment resulted in a significant decrease (28%) of 5-HIAA (P < 0.0001) and a significant increase (41%) of HVA in the CSF. Multiple linear regression analyses were performed to identify the impact of plasma and CSF CIT enantiomers and its metabolites on CSF monoamine metabolites and clinical response. There were 10 responders as defined by a > or =50% decrease of the HAM-D score (DeltaHAM-D) after the 4-week treatment. DeltaHAM-D correlated (Spearman) significantly with CSF S-CIT (r = - 0.483, P < 0.05), CSF S-CIT-PROP (r = -0.543, P = 0.01) (a metabolite formed from CIT by monoamine oxidase [MAO]) and 5-HIAA decrease (Delta5-HIAA) (r = 0.572, P = 0.01). The demonstrated correlations between pharmacokinetic parameters and the clinical outcome as well as 5-HIAA changes indicate that monitoring of plasma S-CIT, CSF S-CIT and CSF S-CIT-PROP may be of clinical relevance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activity monitors based on accelerometry are used to predict the speed and energy cost of walking at 0% slope, but not at other inclinations. Parallel measurements of body accelerations and altitude variation were studied to determine whether walking speed prediction could be improved. Fourteen subjects walked twice along a 1.3 km circuit with substantial slope variations (-17% to +17%). The parameters recorded were body acceleration using a uni-axial accelerometer, altitude variation using differential barometry, and walking speed using satellite positioning (DGPS). Linear regressions were calculated between acceleration and walking speed, and between acceleration/altitude and walking speed. These predictive models, calculated using the data from the first circuit run, were used to predict speed during the second circuit. Finally the predicted velocity was compared with the measured one. The result was that acceleration alone failed to predict speed (mean r = 0.4). Adding altitude variation improved the prediction (mean r = 0.7). With regard to the altitude/acceleration-speed relationship, substantial inter-individual variation was found. It is concluded that accelerometry, combined with altitude measurement, can assess position variations of humans provided inter-individual variation is taken into account. It is also confirmed that DGPS can be used for outdoor walking speed measurements, opening up new perspectives in the field of biomechanics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Defense mechanisms as a central notion of psychoanalysis have inspired various levels of interest in research in psychotherapy and psychopathology. Defense specificities have only recently been investigated systematically with regard to several clinical diagnoses, such as affective and personality disorders. For the present study, 30 inpatients diagnosed with Bipolar Affective Disorder I (BD) were interviewed. An observer-rater method, the Defense Mechanisms Rating Scales (DMRS), applied to session-transcripts, of assessment of defenses was used. A matched, nonclinical control group was introduced. Defense specificities in BD encompass a set of 5 immature defenses, of which omnipotence is linked with symptom level. The level of the therapeutic alliance is predicted by mature defenses. These results are discussed with regard to the psychological vulnerability of BD, and treatment implications for psychodynamic psychotherapy with such challenging patients are evoked.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tutkimuksen aiheena on yleistynyt luottamus. Väitöskirjassa tutkitaan mistä tuntemattomien kansalaisten toisiinsa kohdistama luottamus kumpuaa ja haetaan vastauksia tähän kysymykseen sekä maakohtaisen että vertailevan tutkimuksen avulla. Tutkimus koostuu yhteenvedon lisäksi viidestä tutkimusartikkelista, joissa luottamuksen syntyä tarkastellaan sekä yksilöiden mikrotason vuorovaikutuksen että maiden välisten eroavaisuuksien näkökulmasta. Yleistyneen luottamuksen synnystä on esitetty useita eri teorioita. Tässä tutkimuksessa tarkastellaan näistä kahta keskeisintä. Osa tutkijoista korostaa kansalaisyhteiskunnan ja ruohonjuuritason verkostojen roolia yleistyneen luottamuksen synnyn taustalla. Tämän hypoteesin mukaan kansalaiset, jotka viettävät aikaansa yhdistyksissä tai muissa sosiaalisissa verkostoissa, oppivat muita helpommin luottamaan paitsi täysin tuntemattomiin ihmisiin myös yhteiskunnallisiin instituutioihin (kansalaisyhteiskuntakeskeinen hypoteesi). Toiset taas painottavat yhteiskunnan julkisten instituutioiden merkitystä. Tämä hypoteesi korostaa instituutioiden reiluutta ja oikeudenmukaisuutta (instituutiokeskeinen hypoteesi). Ihmiset pystyvät luottamaan toisiinsa ja ratkaisemaan kollektiivisia ongelmiaan yhdessä silloin kun esimerkiksi poliittiset ja lainsäädännölliset instituutiot pystyvät luomaan tähän tarvittavan toimintaympäristön. Aineistoina käytetään kansallisia (Hyvinvointi- ja palvelut) sekä kansainvälisiä vertailevia kyselytutkimuksia (European Social Survey ja ISSP). Yksilö- ja makrotason analyyseja yhdistämällä selvitetään yleistynyttä luottamusta selittäviä tekijöitä sekä mekanismeja joiden kautta yleistynyt luottamus muodostuu. Väitöskirjan tulokset tukevat suurimmaksi osaksi instituutiokeskeiseen suuntaukseen sisältyviä hypoteeseja yleistyneen luottamuksen kasautumisesta. Kuitenkin myös esimerkiksi yhdistystoiminnalla havaittiin olevan joitakin yhdistysjäsenien ulkopuolelle ulottuvia myönteisiä vaikutuksia kansalaisten luottamukseen, mikä taas tukee kansalaisyhteiskuntakeskeistä hypoteesia. Tutkimuksen keskeinen tulos on, että kaiken kaikkiaan luottamus näyttäisi kukoistavan maissa, joissa kansalaiset kokevat julkiset instituutiot oikeudenmukaisina sekä reiluina, kansalaisyhteiskunnan roolin luottamuksen synnyttämisessä ollessa tälle alisteinen. Syyksi tähän on oletettu, että näissä maissa (erityisesti pohjoismaiset hyvinvointivaltiot) harjoitettu universaali hyvinvointipolitiikka ja palvelut ovat keskeisiä korkeaa yleistynyttä luottamusta selittäviä tekijöitä. Toisaalta maavertailuissa tätä yhteyttä on selitetty myös sillä, että näissä yhteiskunnassa ei ole paikannettavissa selkeää kulttuurisesti erottuvaa alaluokkaa. Tämän tutkimuksen tulokset tukevat enemmän universaalin hyvinvointivaltion oikeudenmukaisuuteen liittyviä ominaisuuksia alaluokkaistumishypoteesin sijaan. Toisaalta mikrotasolla tarkasteltuna yleistyneen luottamuksen ja hyvinvointipalvelujen välinen yhteys liittyy enemmän palveluiden riittävyyteen kuin niiden universaalisuuden asteeseen. Niin ikään maavertailuissa esimerkiksi verotuksen oikeudenmukaisena kokeminen näyttäisi olevan palvelujen saatavuutta tai niihin liittyviä oikeudenmukaisuuden kokemuksia tärkeämpi seikka yleistyneen luottamuksen kannalta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis