973 resultados para Light absorption
Resumo:
Europe is a densely populated region that is a significant global source of black carbon (BC) aerosol, but there is a lack of information regarding the physical properties and spatial/vertical distribution of rBC in the region. We present the first aircraft observations of sub-micron refractory BC (rBC) aerosol concentrations and physical properties measured by a single particle soot photometer (SP2) in the lower troposphere over Europe. The observations spanned a region roughly bounded by 50° to 60° N and from 15° W to 30° E. The measurements, made between April and September 2008, showed that average rBC mass concentrations ranged from about 300 ng m−3 near urban areas to approximately 50 ng m−3 in remote continental regions, lower than previous surface-based measurements. rBC represented between 0.5 and 3% of the sub-micron aerosol mass. Black carbon mass size distributions were log-normally distributed and peaked at approximately 180 nm, but shifted to smaller diameters (~160 nm) near source regions. rBC was correlated with carbon monoxide (CO) but had different ratios to CO depending on location and air mass. Light absorption coefficients were measured by particle soot absorption photometers on two separate aircraft and showed similar geographic patterns to rBC mass measured by the SP2. We summarize the rBC and light absorption measurements as a function of longitude and air mass age and also provide profiles of rBC mass concentrations and size distribution statistics. Our results will help evaluate model-predicted regional rBC concentrations and properties and determine regional and global climate impacts from rBC due to atmospheric heating and surface dimming.
Resumo:
PhotogemA (R) is a hematoporphyrin derivative that has been used as a photosensitizer in experimental and clinical Photodynamic Therapy (PDT) in Brazil. Photosensitizers are degraded under illumination. This process, usually called photobleaching, can be monitored by decreasing in fluorescence intensities and includes the following photoprocesses: photodegradation, phototransformation, and photorelocalization. Photobleaching of hematoporphyrin-type sensitizers during illumination in aqueous solution is related not only to photodegradation but is also followed by the formation of photoproducts with a new fluorescence band at around 640-650 nm and with increased light absorption in the red spectral region at 640 nm. In this study, the influence of pH on the phototransformation process was investigated. PhotogemA (R) solutions, 40 mu g/ml, were irradiated at 514 nm with intensity of 100 mW/cm(2) for 20 min with different pH environments. The controls were performed with the samples in the absence of light. The PhotogemA (R) photodegradation is dependent on the pH. The behavior of photodegradation and photoproducts formation (monitored at 640 nm) is distinct and depends on the photosensitizer concentration. The processes of degradation and photoproducts formation were monitored with Photogemin the concentration of 40 mu g/mL since that demonstrated the best visualization of both processes. While below pH 5 the photodegradation occurred, there was no detectable presence of photoproducts. The increase of pH led to increase of photoproducts formation rate with photodegradation reaching the highest value at pH 10. The increase of photoproducts formation and instability of PhotogemA (R) from pH 6 to pH 10 are in agreement with the desired properties of an ideal photosensitizer since there are significant differences in pH between normal (7.0 < pH < 8.6) and tumor (5.8 < pH < 7.9) tissues. It is important to know the effect of pH in the process of phototransformation (degradation and photoproduct formation) of the molecule since low pH values promotes increase in the proportion of aggregates species in solution and high pH values promotes increase in the proportion of monomeric species. There must be an ideal pH interval which favors the phototransformation process that is correlated with the singlet oxygen formation responsible by the photodynamic effect. These differences in pH between normal and tumor cells can explain the presence of photosensitizers in target tumor cells, making PDT a selective therapy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work a new europium (III) complex with the following formula NH(4) [Eu(bmdm)(4)] was synthesized and characterized. The bmdm (butyl methoxy-dibenzoyl-methane) is a P-diketone molecule used as UV radiation absorber in sunscreen formulations. Coordination of this ligand to the Eu(3+) ion was confinned by FT-IR, while the Raman spectrum suggests the presence of NH(4)(+) ions. The photoluminescence spectra present narrow lines arising from f-f intra-configurational transitions (5)D(0-)(7)F(0,1,2,3,4), dominated by the hypersensitive (5)D(0)-(7)F(2) transition. In the spectrum recorded at 77 K, all transitions split into 2J + 1 lines suggesting that there is just one symmetry site around Eu(3+) ion. This symmetry is not centrosymmetric. The calculated intensity parameters are ohm(2) = 30.5 x 10(-20) cm(2) and ohm(4) = 5.91 x 10(-20) cm(2) for this complex. The CIE chromaticity coordinates (x = 0.67 and y = 0.32) show a dominant wavelength of 615 nm. The color gamut achieved by this complex is a 100% in the CIE color space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Raman, IR absorption and EXAFS spectra at the Ge K-edge and Pb LIII-edge of eight lead germanate glasses, with general formula xPbO(1-x)GeO2 with x = 0.20, 0.25, 0.33, 0.40, 0.50, 0.53, 0.56 and 0.60, have been measured. The occurrence of [GeO6] units besides [GeO4] could not be deduced unambiguously from the data. The vibrational and EXAFS data agree with a progressive depolymerization of the network. Starting from all Ge atoms linked to four bridging oxygens in GeO2 (x = 0), the number of tetrahedral units with one or two non-bridging oxygens increases with x. At low content, Pb2+ ions act as modifiers in the germanate structure, but to a lesser extent than an equivalent number of alkaline ions. © 1993.
Resumo:
Fluoroindate glasses containing 1, 2, 3, and 4 mol% ErF3 were prepared in a dry box under an argon atmosphere. Absorption spectra of these glasses at room temperature were obtained. The Judd-Ofelt parameters Ωλ (λ = 2, 4, 6) for f-f transitions of Er3+ ions as well as transition probabilities, branching ratios, radiative lifetimes, and peak cross-sections for stimulated emission of each band were determined. The concentration effect on the intensities is analyzed. The optical properties of the fluoroindate glasses doped with Er3+ ions are compared with those of other glasses described in the literature. © 1995.
Resumo:
The need for low-chirp and compact transmitters for high-bit-rate optical links has led to the development of integrated laser electroabsorption modulators (ILM). We have investigated feedback effects inducing frequency chirp by developing a model treating the ILM as a whole and obtained analytical expressions of the FM and AM responses. The variation of the frequency chirp with the residual facet reflectivity of the modulator section is calculated. The model predicts the unusual peak in the measured frequency responses and has been used to define design rules.
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
In this work an analysis of the Judd-Ofelt phenomenological Ωλ intensity parameters for the Pr3+ ion in fluoroindate glass is made. Different Pr3+ concentrations, namely 1, 2, 3 and 4 mol% are used. The experimental oscillator strengths have been determined from the absorption spectra. A consistent set of parameters is obtained only with the inclusion of odd rank third order intensity parameters and if the band at 21 470 cm-1 is assigned to the 3H4 → 3P1 transition and the 1I6 component is incorporated in the 3H4 → 3P2 transition at 22 700 cm-1.
Resumo:
Glass formation in the pseudo ternary system ZnF2-GdF3-BaF2-InF3 and other complex systems stabilized by NaF, CaF2, AlF3 and YF3 have been investigated. Samples with greater stability have been prepared and their properties measured. Optical absorption and emission spectra of Gd3+ ions doped glasses with 2, 4, 10 and 20% concentrations have been measured. Using the Judd-Ofelt theory and the experimental oscillator strengths, the Judd-Ofelt parameters have been calculated. The emission of Gd3+ ions from 6I and 6P has been detected and the lifetime has been measured.
Resumo:
Optical absorption, Stokes, and anti-Stokes photoluminescence were performed on Er3+-Yb3+ co-doped fluoroindate glasses. For compounds prepared with a fixed 2 mol % ErF3 concentration and YbF3 contents ranging from 0 to 8 mol %, important upconversion processes were observed as a function of temperature and photon excitation energy. Based on the experimental data, two mechanisms for the upconversion (or anti-Stokes photoluminescence) processes were identified and analyzed in detail. At high Yb contents, the upconversion mechanisms are mostly determined by the population of the 2F5/2 levels of Yb3+ ions (or 4I11/2 levels of Er3+ ions, by energy transfer) regardless of the photon excitation energy and temperature of measurement. Moreover, green and red light emission have similar intensities when a large Yb3+ content is present. © 1998 American Institute of Physics.
Resumo:
The present work reports the study of KCl thin films doped with In+ or Tl+. Both systems show optical absorption bands similar to single crystals. As the impurity concentration increases, so does the absorption as also the half band width, unlike in KCl: Cu+ films. Further experimental techniques such as X-ray diffraction, scanning electron micrographs and energy dispersive X-ray observations were used and comparative analysis with KCl : Cu+ films reveals new conditions for better crystallinity of the samples.
Resumo:
In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.