960 resultados para Laser-induced modification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant reduction in laser power, preventing detrimental positive optical feedback and allowing improved growth control. Systematic study of experimental parameters combined with simple thermostatic modeling establishes general guidelines for the effective design of such catalyst/absorption layer combinations. Local growth of vertically aligned carbon nanotube forests directly on flexible polyimide substrates is demonstrated, opening up new routes for nanodevice design and fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond laser pulses are used in order to induce dielectric breakdown in gaseous mixtures, namely in some reactive air-methane mixtures. The light emitted from the laser induced plasma was analyzed while the main emission features are identified and assigned. From the analysis of the emission spectra, a linear relationship was found to hold between the intensity of some spectral features and methane content. Finally, the use of femtosecond laser induced breakdown as a tool for the in situ determination of the composition of gaseous mixtures (e.g., equivalence ratio) is also discussed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H α and H β, and some molecular origin emissions were the most prominent spectral features, while the CN (B 2Σ +-X 2Σ +) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures. © 2012 American Institute of Physics.