736 resultados para Knowledge Management Maturity Model


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Basic Research Program of China; Chinese Academy of Sciences; Information Society Technologies; Institute of Computing Technology, Chinese Academy of Sciences; Zhuhai National Hi-tech Industrial Development Zone

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comfort is, in essence, satisfaction with the environment, and with respect to the indoor environment it is primarily satisfaction with the thermal conditions and air quality. Improving comfort has social, health and economic benefits, and is more financially significant than any other building cost. Despite this, comfort is not strictly managed throughout the building lifecycle. This is mainly due to the lack of an appropriate system to adequately manage comfort knowledge through the construction process into operation. Previous proposals to improve knowledge management have not been successfully adopted by the construction industry. To address this, the BabySteps approach was devised. BabySteps is an approach, proposed by this research, which states that for an innovation to be adopted into the industry it must be implementable through a number of small changes. This research proposes that improving the management of comfort knowledge will improve comfort. ComMet is a new methodology proposed by this research that manages comfort knowledge. It enables comfort knowledge to be captured, stored and accessed throughout the building life-cycle and so allowing it to be re-used in future stages of the building project and in future projects. It does this using the following: Comfort Performances – These are simplified numerical representations of the comfort of the indoor environment. Comfort Performances quantify the comfort at each stage of the building life-cycle using standard comfort metrics. Comfort Ratings - These are a means of classifying the comfort conditions of the indoor environment according to an appropriate standard. Comfort Ratings are generated by comparing different Comfort Performances. Comfort Ratings provide additional information relating to the comfort conditions of the indoor environment, which is not readily determined from the individual Comfort Performances. Comfort History – This is a continuous descriptive record of the comfort throughout the project, with a focus on documenting the items and activities, proposed and implemented, which could potentially affect comfort. Each aspect of the Comfort History is linked to the relevant comfort entity it references. These three components create a comprehensive record of the comfort throughout the building lifecycle. They are then stored and made available in a common format in a central location which allows them to be re-used ad infinitum. The LCMS System was developed to implement the ComMet methodology. It uses current and emerging technologies to capture, store and allow easy access to comfort knowledge as specified by ComMet. LCMS is an IT system that is a combination of the following six components: Building Standards; Modelling & Simulation; Physical Measurement through the specially developed Egg-Whisk (Wireless Sensor) Network; Data Manipulation; Information Recording; Knowledge Storage and Access.Results from a test case application of the LCMS system - an existing office room at a research facility - highlighted that while some aspects of comfort were being maintained, the building’s environment was not in compliance with the acceptable levels as stipulated by the relevant building standards. The implementation of ComMet, through LCMS, demonstrates how comfort, typically only considered during early design, can be measured and managed appropriately through systematic application of the methodology as means of ensuring a healthy internal environment in the building.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems of collaborative engineering design and knowledge management at the conceptual stage in a network of dissimilar enterprises was investigated. This issue in engineering design is a result of the supply chain and virtual enterprise (VE) oriented industry that demands faster time to market and accurate cost/manufacturing analysis from conception. The solution consisted of a de-centralised super-peer net architecture to establish and maintain communications between enterprises in a VE. In the solution outlined below, the enterprises are able to share knowledge in a common format and nomenclature via the building-block shareable super-ontology that can be tailored on a project by project basis, whilst maintaining the common nomenclature of the ‘super-ontology’ eliminating knowledge interpretation issues. The two-tier architecture layout of the solution glues together the peer-peer and super-ontologies to form a coherent system for both internal and virtual enterprise knowledge management and product development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EU-based industry for non-leisure games is an emerging business. As such it is still fragmented and needs to achieve critical mass to compete globally. Nevertheless its growth potential is widely recognized. To become competitive the relevant applied gaming communities and SMEs require support by fostering the generation of innovation potential. The European project Realizing an Applied Gaming Ecosystem (RAGE) is aiming at supporting this challenge. RAGE will help by making available an interoperable set of advanced technology assets, tuned to applied gaming, as well as proven practices of using asset-based applied games in various real-world contexts, and finally a centralized access to a wide range of applied gaming software modules, services and related document, media, and educational resources within an online community portal called the RAGE Ecosystem. It is based on an integrational, user-centered approach of Knowledge Management and Innovation Processes in the shape of a service-based implementation.