993 resultados para Jump-diffusion Equations
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.
Resumo:
We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopulations with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and diffusion occur sequentially in time
Resumo:
Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics.
Resumo:
We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
In this paper we study under which circumstances there exists a general change of gross variables that transforms any FokkerPlanck equation into another of the OrnsteinUhlenbeck class that, therefore, has an exact solution. We find that any FokkerPlanck equation will be exactly solvable by means of a change of gross variables if and only if the curvature tensor and the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We apply our criteria to the Kubo and Gompertz models.
Resumo:
Exact solutions to FokkerPlanck equations with nonlinear drift are considered. Applications of these exact solutions for concrete models are studied. We arrive at the conclusion that for certain drifts we obtain divergent moments (and infinite relaxation time) if the diffusion process can be extended without any obstacle to the whole space. But if we introduce a potential barrier that limits the diffusion process, moments converge with a finite relaxation time.
Resumo:
We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.