794 resultados para Intercultural education - Science teaching
Resumo:
The intentions of the science curriculum are very often constrained by the forms of student learning that are required by, or are currently available within, the system of education. Furthermore, little attention is given to developing new approaches to assessment that would encourage these good intentions. In this chapter, we argue that achieving this broadening of the intentions of science education will require a diversity of assessment techniques and that only a profile of each student’s achievement will capture the range of intended learnings. We explore a variety of assessment modes that match some of these new aspects of science learning and that also provide students with both formative information and a more comprehensive and authentic summative profile of their performances. Our discussion is illustrated with research-based examples of assessment practice in relation to three aspects of science education that are increasingly referred to in curriculum statements as desirable human dimensions of science: context-based science education, decision-making processes and socioscientific issues and integrated science education. We conclude with some notes on what these broader kinds of assessment mean for teachers and the support they would need to include them in their day-to-day practices in the science classrooms if, and when, the mainstream of science teaching and learning takes these curricular intentions seriously.
Resumo:
Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers’ self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiry as part of experience-centered category, Solution and Method Inquiry as part of problem-centered category, and Topic and Chaperoned Inquiry as part of a question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching, and suggests fertile areas of future research into this valued and influential phenomenon broadly known as “Inquiry Teaching”.
Resumo:
This paper reports on a Professional Learning Programme undertaken by primary school teachers in China that aimed to facilitate the development of ‘adaptive expertise’ in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education’s (2010–2020) education reforms. The study found that the participants made substantial progress towards the development of adaptive expertise manifested not only by advances in the participants’ repertoires of pedagogical content knowledge but also in changes to their levels of confidence and identities as teachers. By the end of the programme, the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science learning and assessment activities. The findings from the study indicate that those engaged in the development of Professional Learning Programmes in Asia-Pacific nations need to take cognizance of certain cultural factors and traditions idiosyncratic to the educational systems. This is reflected in the amended set of principles to inform the design and implementation of professional learning programmes presented in the concluding sections of the paper.
Resumo:
Research on the achievement and retention of female students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of females in some science, technology, engineering and mathematics (STEM) courses. The Interests and Recruitment in Science (IRIS) project is an international project that aims to contribute to understanding and improving recruitment, retention and gender equity in STEM higher education. Nearly 3500 first year students in 30 Australian universities responded to the IRIS survey of 5-point Likert items and open responses. This paper explores gender differences in first year university students’ responses to three questions about important influences on their course choice. The IRIS study found good teachers were rated highly by both males and females as influential in choosing STEM courses, and significantly higher numbers of females rated personal encouragement from senior high school science teacher as very important. In suggestions for addressing sex disparities in male-dominated STEM courses, more females indicated the importance of good teaching/encouragement and more females said (unspecified) encouragement. This study relates to the influence of school science teachers and results are discussed in relation to implications for science education.
Resumo:
"Geography education is indispensable to the development of responsible and active citizens in the present and future world" is one of the main statements in the International Charter on Geographical Education. This charter was edited in 1992 by Haubrich, chair of the Commission on Geographical Education of the International Geographical Union (IGU). Twenty years later this statement is still true. Geography educators all over the world are looking for ways to talk with young people about their image of their world and to help them to develop their knowledge, skills and ideas about the complex world we live in. However, different ideas exist about what geography we should learn and teach and how. The Commission on Geographical Education of the International Geographical Union tries to help to improve the quality and position of geography education worldwide promoting the dissemination of good practices and research results in the field of geography education.
Resumo:
Dynamics is an essential core engineering subject and it is considered as one of the hardest subjects in the engineering discipline. Many students acknowledged that Dynamics is very hard to understand and comprehend the abstract concepts through traditional teaching methods with normal tutorials and assignments. In this study, we conducted an investigation on the application of visualization technique to help students learning the unit with the fundamental theory displayed in the physical space. The research was conducted based on the following five basic steps of Action Learning Cycle including: Identifying problem, Planning action, Implementing, Evaluating, and Reporting. Through our studies, we have concluded that visualization technique can definitely help students in learning and comprehending the abstract theories and concepts of Dynamics.
Resumo:
This paper reports on the initial phase of a Professional Learning Program (PLP) undertaken by 100 primary school teachers in China that aimed to facilitate the development of adaptive expertise in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education’s (2010-2020) education reforms. Key principles derived from literature about professional learning and scaffolding of learning informed the design of the PLP. The analysis of data revealed that the participants had made substantial progress towards the development of adaptive expertise. This was manifested not only by advances in the participants’ repertoires of Subject Matter Knowledge and Pedagogical Content Knowledge but also in changes to their levels of confidence and identities as teachers. By the end of the initial phase of the PLP, the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science learning and assessment activities. The findings from the study indicate that those engaged in the development of PLPs for teachers in China need to take cognizance of certain cultural factors and traditions idiosyncratic to the Chinese educational system. A set of revised principles is then presented to inform the future design and implementation of PLPs for teachers in China.
Resumo:
One method of addressing the shortage of science and mathematics teachers is to train scientists and other science-related professionals to become teachers. Advocates argue that as discipline experts these career changers can relate the subject matter knowledge to various contexts and applications in teaching. In this paper, through interviews and classroom observations with a former scientist and her students, we examine how one career changer used her expertise in microbiology to teach microscopy. These data provided the basis for a description of the teacher’s instruction which was then analysed for components of domain knowledge for teaching. Consistent with the literature, the findings revealed that this career changer needed to develop her pedagogical knowledge. However, an interesting finding was that the teacher’s subject matter as a science teacher differed substantively from her knowledge as a scientist. This finding challenges the assumption that subject matter is readily transferable across professions and provides insight into how to better prepare and support career changers to transition from scientist to science teacher.
Resumo:
This e-book is devoted to the use of spreadsheets in the service of education in a broad spectrum of disciplines: science, mathematics, engineering, business, and general education. The effort is aimed at collecting the works of prominent researchers and educators that make use of spreadsheets as a means to communicate concepts with high educational value. The e-book brings some of the most recent applications of spreadsheets in education and research to the fore. To offer the reader a broad overview of the diversity of applications, carefully chosen articles from engineering (power systems and control), mathematics (calculus, differential equations, and probability), science (physics and chemistry), and education are provided. Some of these applications make use of Visual Basic for Applications (VBA), a versatile computer language that further expands the functionality of spreadsheets. The material included in this e-book should inspire readers to devise their own applications and enhance their teaching and/or learning experience.
Resumo:
STEM education is a new frontier in Australia, particularly for primary schools. However, the E in STEM needs to have a stronger focus with science and mathematics concepts aligned to the presiding curricula. In addition, pedagogical knowledge practices such as planning, preparation, teaching strategies, assessment and so forth need to be connected to key concepts for developing a STEM education. One of the aims of this study was to understand how a pedagogical knowledge practice framework could be linked to student outcomes in STEM education. Specifically, this qualitative research investigated Year 4 students’ involvement in an integrated STEM education program that focused on science concepts (e.g., states of matter, testing properties of materials) and mathematics concepts (such as 3D shapes and metric measurements: millilitres, temperature, grams, centimetres) for designing, making and testing a strong and safe medical kit to insulate medicines at desirable temperatures. Eleven pedagogical knowledge practices (e.g., planning, preparation, teaching strategies, classroom management, and assessment) were used as a framework for understanding how teaching may be linked to student outcomes in STEM education. For instance, “planning” involved devising a student booklet as a resource for students to understand the tasks required of them, which also provided space for them to record ideas, results and information. Planning involved linking national and state curriculum documents to the STEM education activities. More studies are required around pedagogical knowledge frameworks to understand what students learn when involved in STEM education, particularly with the inclusion of engineering education.
Resumo:
Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and mathematics concepts (e.g., 3D shapes and metric measurements) for designing, making and testing a strong and safe medical kit to insulate medicines (ice cubes) at desirable temperatures. Data collection tools included student work samples, photographs, written responses from students and the teacher, and researcher notes. In a post-hoc analysis, a pedagogical knowledge practice framework (i.e., planning, timetabling, preparation, teaching strategies, content knowledge, problem solving, classroom management, questioning, implementation, assessment, and viewpoints) was used to explain links to student outcomes in STEM education. The study showed how pedagogical knowledge practices may be linked to student outcomes (knowledge, understanding, skill development, and values and attitudes) for a STEM education activity.
Resumo:
Perceptions of mentors' practices related to primary science teaching were obtained from final year preservice teachers after a 4-week practicum. Responses to a survey (n=59), constructed through literature-based practices and attributes of effective mentors, identified perceived strengths and weaknesses in the area of mentoring preservice teachers of primary science. Through exploratory factor analysis, this pilot study also tested the unidimensionality of mentoring practices and attributes assigned to categories (factors) that may characterise mentoring in primary science teaching. These suggested factors, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback had Cronbach alpha coefficients of internal consistency reliability of 0.93, 0.78, 0.94, 0.90, and 0.81 respectively. Survey responses indicated that mentors generally do not provide specific mentoring in primary science teaching. It is argued that science education reform requires the identification of factors and associated attributes and practices of mentoring primary science in order to effectively develop preservice teachers in primary science teaching.
Resumo:
Twenty-nine first-year pre-service teachers' perceptions of mentoring and primary science teaching were collected through a literature-based survey. Frequencies, means, and standard deviations of these responses provided data for analysis on these mentoring practices. Results indicated that even though mentors may provide feedback, the majority of mentors do not provide specific primary science mentoring in the areas of pedagogical knowledge, system requirements, and the modeling of teaching practice. It appears that the mentor's personal attributes may also influence the quality of mentoring. There were tentative conclusions that first-year pre-service teachers may not have strong beliefs about specific primary science mentoring practices, and possibly because of inexperience, may not be critical enough to analyse their mentoring in primary science teaching. Identifying specific mentoring for developing primary science teaching may assist mentors in their practices with pre-service teachers.
Resumo:
This chapter will report on a study that sought to develop a systemwide approach to embedding education for sustainability (EfS (the preferred term in Australia) in teacher education. The strategy for a coordinated and coherent systemic approach involved identifying and eliciting the participation of key agents of change within the‘teacher education system’ in one state in Australia, Queensland. This consisted of one representative from each of the eight Queensland universities offering pre-service teacher education, as well as the teacher registration authority, the key State Government agency responsible for public schools, and two national professional organisations. Part of the approach involved teacher educators at different universities developing an institutional specific approach to embedding sustainability education within their teacher preparation programs. Project participants worked collaboratively to facilitate policy and curriculum change while the project leaders used an action research approach to inform and monitor actions taken and to provide guidance for subsequent actions to effect change simultaneously at the state, institutional and course levels. In addition to the state-wide multi-site case study, which we argue has broader applications to national systems in other countries, the chapter will include two institutional level case studies of efforts to embed sustainability in science teacher education.