947 resultados para Integrated Co rich CoPtP
Resumo:
Co-occurrence of HIV and substance abuse is associated with poor outcomes for HIV-related health and substance use. Integration of substance use and medical care holds promise for HIV patients, yet few integrated treatment models have been reported. Most of the reported models lack data on treatment outcomes in diverse settings. This study examined the substance use outcomes of an integrated treatment model for patients with both HIV and substance use at three different clinics. Sites differed by type and degree of integration, with one integrated academic medical center, one co-located academic medical center, and one co-located community health center. Participants (n=286) received integrated substance use and HIV treatment for 12 months and were interviewed at 6-month intervals. We used linear generalized estimating equation regression analysis to examine changes in Addiction Severity Index (ASI) alcohol and drug severity scores. To test whether our treatment was differentially effective across sites, we compared a full model including site by time point interaction terms to a reduced model including only site fixed effects. Alcohol severity scores decreased significantly at 6 and 12 months. Drug severity scores decreased significantly at 12 months. Once baseline severity variation was incorporated into the model, there was no evidence of variation in alcohol or drug score changes by site. Substance use outcomes did not differ by age, gender, income, or race. This integrated treatment model offers an option for treating diverse patients with HIV and substance use in a variety of clinic settings. Studies with control groups are needed to confirm these findings.
Resumo:
In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over approximately 1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization.
Resumo:
BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.
Resumo:
Zooplankton play a key role in climate change through the transfer of large quantities of CO sub(2) to the deep ocean by a process known as the biological pump. Plankton composition is crucial as associated mineral material facilitates sinking of carbon rich debris and some taxa package faecal and detrital material. Ocean acidification may impact calcareous groups. Zooplankton have also been shown to be highly sensitive indicators of environmental change. Results will be presented to show that ocean temperature, circulation and planktonic ecosystems (using data from the Continuous Plankton Recorder, CPR survey) in the North Atlantic are changing rapidly in concert and that there is evidence to suggest that the changes are an ocean wide response to global warming with potential feedback effects. Given the importance of the oceans to the carbon cycle, even a minor change in the flux of carbon to the deep ocean would have a big impact increasing growth of atmospheric CO sub(2). We have virtually no understanding of the spatial and temporal variability in the efficiency of the biological pump for most of the world's ocean. Establishing new plankton monitoring programmes backed up by appropriate research to help understand processes is needed to address this gap in knowledge. There is little doubt within a global change context and the future of mankind that a potential acceleration in the growth of atmospheric carbon due to a reduction in the efficiency of the biological pump is a key issue for future research in zooplankton ecology.
Resumo:
Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.
Resumo:
We here analyse the observational SO and CS data presented in Nilsson ct al. (2000). The SO/CS integrated intensity ratio maps are presented for 19 molecular clouds, together with tables of relevant ratios at strategic positions, where we have also observed (SO)-S-34 and/or (CS)-S-34. The SO/CS abundance ratio as calculated from an LTE analysis is highly varying within and between the sources. Our isotopomer observations and Monte Carlo simulations verify that this is not an artifact due to optical depth problems. The variation of the maximum SO/CS abundance ratio between the clouds is 0.2-7. The largest variations within a cloud are found for the most nearby objects, possibly indicating resolution effects. We have also performed time dependent chemical simulations. We compare the simulations with our observed SO/CS abundance ratios and suggest a varying oxygen to carbon initial abundance, differing temporal evolution, density differences and X-ray sources associated with young stellar objects as possible explanations to the variations. In particular, the observed variation of the maximum SO/CS abundance ratio between the clouds can be explained by using initial O/C+ abundance ratios in the range 1.3-2.5. We finally derive a relationship between the SO/CS and O-2/CO abundance ratios, which may be used as a guide to find the most promising interstellar O-2 search targets.
Resumo:
Background: Co-localisation is a widely used measurement in immunohistochemical analysis to determine if fluorescently labelled biological entities, such as cells, proteins or molecules share a same location. However the measurement of co-localisation is challenging due to the complex nature of such fluorescent images, especially when multiple focal planes are captured. The current state-of-art co-localisation measurements of 3-dimensional (3D) image stacks are biased by noise and cross-overs from non-consecutive planes.
Method: In this study, we have developed Co-localisation Intensity Coefficients (CICs) and Co-localisation Binary Coefficients (CBCs), which uses rich z-stack data from neighbouring focal planes to identify similarities between image intensities of two and potentially more fluorescently-labelled biological entities. This was developed using z-stack images from murine organotypic slice cultures from central nervous system tissue, and two sets of pseudo-data. A large amount of non-specific cross-over situations are excluded using this method. This proposed method is also proven to be robust in recognising co-localisations even when images are polluted with a range of noises.
Results: The proposed CBCs and CICs produce robust co-localisation measurements which are easy to interpret, resilient to noise and capable of removing a large amount of false positivity, such as non-specific cross-overs. Performance of this method of measurement is significantly more accurate than existing measurements, as determined statistically using pseudo datasets of known values. This method provides an important and reliable tool for fluorescent 3D neurobiological studies, and will benefit other biological studies which measure fluorescence co-localisation in 3D.
Resumo:
The activity of a 5-wt% Cu/CeO2-x catalyst during preferential CO oxidation in hydrogen-rich gas mixtures was studied in a microchannel reactor. The CO concentration dropped from 1 vol.% to 10 ppm at a selectivity of 60%, at a temperature of 190 degrees C, and a weight hour space velocity (WHSV) of 55,000 cm(3) g(-1) h(-1). Both the CO concentration and the temperature increased when the WHSV was increased from 50,000 to 500,000 cm(3) g(-1) h(-1). An increase of the O-2 concentration from a 1.2 to 3 fold excess reduced the CO concentration to 10 ppm in a broad temperature interval of 50 degrees C at WHSVs up to 275,000 cm(3) g(-1) h(-1). The preferential CO oxidation could be carried out at higher flow rates and at higher selectivities in the microchannel reactor compared to a fixed-bed flow reactor. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The selective hydrogenation of acetylene from ethylene rich streams was conducted at high pressure and in the presence of CO over two 1 wt% loaded Pd/TiO2 catalysts with differing dispersions. Although, the more poorly dispersed sample did not result in high acetylene conversion only a small proportion of the total available ethylene was hydrogenated to ethane. The more highly dispersed sample was able to remove acetylene to a level below the detection limit but this was at the expense of significant proportion (ca. 30%) of the available ethylene. Modification of the catalysts by exposure to triphenyl phosphine or diphenyl sulfide and subsequent reduction at 393 K led to improved performance with increased conversion of acetylene and decreased propensity to hydrogenate ethylene resulting in an overall net gain in ethylene. The higher dispersed sample which had been ligand modified provided the best results overall and in particular for the diphenyl sulfide treated sample which was able to completely eliminate acetylene and still obtain a net gain in ethylene. The differences observed are thought to be due to the creation of appropriate active ensembles of Pd atoms which are able to accommodate acetylene but have limited ability to adsorb ethylene. Sub-surface hydrogen formation was suppressed, but not eliminated, by exposure to modifier.
Resumo:
At the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site, the iron content of shallow subsurface materials (i.e. weathered saprolite) is relatively high (up to 5-6% as w/w), and therefore, the forms of the iron species present plays a critical role in the long-term sequestration of uranium. A long term pilot-scale study of the bioreduction and reoxidation of uranium conducted at the ORIFRC area 3 site, adjacent to the former S-3 disposal ponds (source zone), has provided us with the opportunity to study the impact of iron species on the sequestration of U(VI). The aqueous U(VI) concentrations at the site were decreased to below the EPA MCL through the intermittent injection of ethanol as the electron donor. Previous field tests indicated that both oxygen and nitrate could oxidize the bioreduced U(IV) and cause a short-term rebound of aqueous phase uranium concentration after the oxidative agents were delivered directly to the bioreduced zone.
A field test has been conducted to examine the long-term effect of exposure of bioreduced sediments to nitrate in contaminated groundwater for more than 1,380 days at the Area 3 site. Contaminated groundwater was allowed to invade the previously bioreduced zone via the natural groundwater gradient after an extended period in which reducing conditions were maintained and the bioreduced zone was protected from the influx of upgradient contaminated groundwater. The geochemical response to the invasion of contaminated groundwater was dependent on whether the monitoring location is in the middle or the fringe of the previously bioreduced zone. In general, the nitrate concentrations in the previously bioreduced area, increased gradually from near zero to ~50-300 mM within 200 days and then stabilized. The pH declined from bioreduced levels of 6.2-6.7 to below 5.0. Uranium concentrations rebounded in all monitoring wells but at different rates. At most locations U concentrations rebounded, declined and then rebounded again. Methane gas disappeared while a significant level (20,000 to 44,000 ppmv) N2O was found in the groundwater of monitoring wells after three years of reoxidization.
The U(IV) in sediments was mainly reoxidized to U(VI) species. Based on XANES analysis, the predominate uranium in all samples after re-oxidation was similar to a uranyl nitrate form. But the U content in the sediment remained as high as that determined after bioreduction activates were completed, indicating that much of the U is still sequestrated in situ. SEM observations of surged fine sediments revealed that clusters of colloidal-sized (200-500nm) U-containing precipitates appeared to have formed in situ, regardless from sample of FW106 in non-bioactivity control area or of pre-bioreduced FW101-2 and FW102-3. Additionally, SEM-EDS and microprobe analysis, showed that the U-containing precipitates (~1% U) in FW106 are notably higher in Fe, compared to the precipitates (~1-2.5% U) from FW101-2 and FW102-3. However, XRF analysis indicated that the U content was remained as high as 2180 and 1810 mg/kg with U/Fe ratio at 0.077 and 0.055 vs 0.037 g/g, respectively in pre-bioreduced FW101-2 and FW102-3, suggesting more U sequestrated by Fe in pre-bioreduced sediments.
Resumo:
Practical demonstration of the operational advantages gained through the use of a co-operating retrodirective array (RDA) basestation and Van Atta node arrangements is discussed. The system exploits a number of inherent RDA features to provide analogue real time multifunctional operation at low physical complexity. An active dual-conversion four element RDA is used as the power distribution source (basestation) while simultaneously achieving a receive sensitivity level of ??109 dBm and 3 dB automatic beam steering angle of ??45??. When mobile units are each equipped with a semi-passive four element Van Atta array, it is shown mobile device orientation issues are mitigated and optimal energy transfer can occur because of automatic beam formation resulting from retrodirective self-pointing action. We show that operation in multipath rich environments with or without line of sight acts to reduce average power density limits in the operating volume with high energy density occurring at mobile nodes sites only. The system described can be used as a full duplex ASK communications link, or, as a means for remote node charging by wireless means, thereby enhancing deployment opportunities between unstabilised moving platforms.
Resumo:
We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (c.f. SN 2006jc), dominated by intermediate-width (3x10^3 km/s) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt = 9-23 days and shows an NUV-NIR SED with temperature > 17x10^3 K and a peak rise magnitude of Mz = -18.9 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17 - 100 M_sun) explosion within a He-enriched circumstellar medium. However, unlike previous Type Ibn supernovae, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits (Sigma Halpha
Resumo:
The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\to$ N (also, CO $\to$ C $\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, C$_n$N ($n$=1, 3, 5), C$_n$N$^-$ ($n$=1, 3, 5), HC$_n$N ($n$=1, 3, 5, 7, 9), H$_2$CN and CH$_2$CN. The chemistry of many species is directly or indirectly affected by the photodissociation of N$_2$ and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N$_2$ and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.
Resumo:
The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.