1000 resultados para Integral geometry
Resumo:
This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.
Resumo:
Abstract is not available.
Resumo:
A new approach to Penrose's twistor algebra is given. It is based on the use of a generalised quaternion algebra for the translation of statements in projective five-space into equivalent statements in twistor (conformal spinor) space. The formalism leads toSO(4, 2)-covariant formulations of the Pauli-Kofink and Fierz relations among Dirac bilinears, and generalisations of these relations.
Resumo:
By making use of the fact that the de-Sitter metric corresponds to a hyperquadric in a five-dimensional flat space, it is shown that the three Robertson-Walker metrics for empty spacetime and positive cosmological constant, corresponding to 3-space of positive, negative and zero curvative, are geometrically equivalent. The 3-spaces correspond to intersections of the hyperquadric by hyperplanes, and the time-like geodesics perpendicular to them correspond to intersections by planes, in all three cases.
Resumo:
Abstract is not available.
Resumo:
The concept of domain integral used extensively for J integral has been applied in this work for the formulation of J(2) integral for linear elastic bimaterial body containing a crack at the interface and subjected to thermal loading. It is shown that, in the presence of thermal stresses, the J(k) domain integral over a closed path, which does not enclose singularities, is a function of temperature and body force. A method is proposed to compute the stress intensity factors for bimaterial interface crack subjected to thermal loading by combining this domain integral with the J(k) integral. The proposed method is validated by solving standard problems with known solutions.
Resumo:
The integral diaphragm pressure transducer consists of a diaphragm machined from precipitation hardened martensitic (APX4) steel. Its performance is quite significant as it depends upon various factors such as mechanical properties including induced residual stress levels, metallurgical and physical parameters due to different stages of processing involved. Hence, the measurement and analysis of residual stress becomes very important from the point of in-service assessment of a component. In the present work, the stress measurements have been done using the X-ray diffraction (XRD) technique, which is a non-destructive test (NDT). This method is more reliable and widely used compared to the other NDT techniques. The metallurgical aspects have been studied by adopting the conventional metallographic practices including examination of microstructure using light microscope. The dimensional measurements have been carried out using dimensional gauge. The results of the present investigation reveals that the diaphragm material after undergoing series of realization processes has yielded good amount of retained austenite in it. Also, the presence of higher compressive stresses induced in the transducer results in non-linearity, zero shift and dimensional instability. The problem of higher retained austenite content and higher compressive stress have been overcome by adopting a new realization process involving machining and cold and hot stabilization soak which has brought down the retained austenite content to about 5–6% and acceptable level of compressive stress in the range −100 to −150 MPa with fine tempered martensitic phase structure and good dimensional stability. The new realization process seems to be quite effective in terms of controlling retained austenite content, residual stress, metallurgical phase as well as dimensional stability and this may result in minimum zero shift of the diaphragm system.
Resumo:
The paper presents a geometry-free approach to assess the variation of covariance matrices of undifferenced triple frequency GNSS measurements and its impact on positioning solutions. Four independent geometryfree/ ionosphere-free (GFIF) models formed from original triple-frequency code and phase signals allow for effective computation of variance-covariance matrices using real data. Variance Component Estimation (VCE) algorithms are implemented to obtain the covariance matrices for three pseudorange and three carrier-phase signals epoch-by-epoch. Covariance results from the triple frequency Beidou System (BDS) and GPS data sets demonstrate that the estimated standard deviation varies in consistence with the amplitude of actual GFIF error time series. The single point positioning (SPP) results from BDS ionosphere-free measurements at four MGEX stations demonstrate an improvement of up to about 50% in Up direction relative to the results based on a mean square statistics. Additionally, a more extensive SPP analysis at 95 global MGEX stations based on GPS ionosphere-free measurements shows an average improvement of about 10% relative to the traditional results. This finding provides a preliminary confirmation that adequate consideration of the variation of covariance leads to the improvement of GNSS state solutions.
Resumo:
The availability of a significant number of the Structures of helical membrane proteins has prompted us to investigate the mode of helix-helix packing. In the present study, we have considered a dataset of alpha-helical membrane proteins representing Structures solved from all the known superfamilies. We have described the geometry of all the helical residues in terms of local coordinate axis at the backbone level. Significant inter-helical interactions have been considered as contacts by weighing the number of atom-atom contacts, including all the side-chain atoms. Such a definition of local axis and the contact criterion has allowed us to investigate the inter-helical interaction in a systematic and quantitative manner. We show that a single parameter (designated as alpha), which is derived from the parameters representing the Mutual orientation of local axes, is able to accurately Capture the details of helix-helix interaction. The analysis has been carried Out by dividing the dataset into parallel, anti-parallel, and perpendicular orientation of helices. The study indicates that a specific range of alpha value is preferred for interactions among the anti-parallel helices. Such a preference is also seen among interacting residues of parallel helices, however to a lesser extent. No such preference is seen in the case of perpendicular helices, the contacts that arise mainly due to the interaction Of Surface helices with the end of the trans-membrane helices. The Study Supports the prevailing view that the anti-parallel helices are well packed. However, the interactions between helices of parallel orientation are non-trivial. The packing in alpha-helical membrane proteins, which is systematically and rigorously investigated in this study, may prove to be useful in modeling of helical membrane proteins.
Resumo:
Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.
Resumo:
In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.
Resumo:
Strong motion array records are analyzed in this paper to identify and map the source zone of four past earthquakes. The source is represented as a sequence of double couples evolving as ramp functions, triggering at different instants, distributed in a region yet to be mapped. The known surface level ground motion time histories are treated as responses to the unknown double couples on the fault surface. The location, orientation, magnitude, and risetime of the double couples are found by minimizing the mean square error between analytical solution and instrumental data. Numerical results are presented for Chi-Chi, Imperial Valley, San Fernando, and Uttarakashi earthquakes. Results obtained are in good agreement with field investigations and those obtained from conventional finite fault source inversions.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.