953 resultados para Instructions to juries
Resumo:
This manual was designed to enable State of Iowa department directors and staff to prepare budget estimates for upcoming fiscal years. Included are samples of standard budget request forms, procedures and instructions to be followed during the budget preparation process.
Resumo:
International audience
Resumo:
Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.
Resumo:
This research investigated faking across test administration modes in an employment testing scenario. For the first time, phone administration was included. Participants (N = 91) were randomly allocated to testing mode (telephone, Internet, or pen-and-paper). Participants completed a personality measure under standard instructions and then under instructions to fake as an ideal police applicant. No significant difference in any faked personality domains as a function of administration mode was found. Effect sizes indicated that the influence of administration mode was small. Limitations and future directions are considered. Overall, results indicate that if an individual intends to fake on a self-report test in a vocational assessment scenario, the electronic administration mode in which the test is delivered may be unimportant.
Resumo:
In this thesis, we will introduce the innovative concept of a plenoptic sensor that can determine the phase and amplitude distortion in a coherent beam, for example a laser beam that has propagated through the turbulent atmosphere.. The plenoptic sensor can be applied to situations involving strong or deep atmospheric turbulence. This can improve free space optical communications by maintaining optical links more intelligently and efficiently. Also, in directed energy applications, the plenoptic sensor and its fast reconstruction algorithm can give instantaneous instructions to an adaptive optics (AO) system to create intelligent corrections in directing a beam through atmospheric turbulence. The hardware structure of the plenoptic sensor uses an objective lens and a microlens array (MLA) to form a mini “Keplerian” telescope array that shares the common objective lens. In principle, the objective lens helps to detect the phase gradient of the distorted laser beam and the microlens array (MLA) helps to retrieve the geometry of the distorted beam in various gradient segments. The software layer of the plenoptic sensor is developed based on different applications. Intuitively, since the device maximizes the observation of the light field in front of the sensor, different algorithms can be developed, such as detecting the atmospheric turbulence effects as well as retrieving undistorted images of distant objects. Efficient 3D simulations on atmospheric turbulence based on geometric optics have been established to help us perform optimization on system design and verify the correctness of our algorithms. A number of experimental platforms have been built to implement the plenoptic sensor in various application concepts and show its improvements when compared with traditional wavefront sensors. As a result, the plenoptic sensor brings a revolution to the study of atmospheric turbulence and generates new approaches to handle turbulence effect better.
Resumo:
Context:Most child population is able to undergo dental treatment in the conventional setting. However, some children fail to cope with in-office conscious state and cannot respond to usual management modalities. This review aims to discuss the topic further. Evidence Acquisition: A computerized search in databases PubMed, MEDLINE, EMBASE, Google Scholar and Google were performed using dental general anesthesia related keywords. Original and review English-written articles that were limited to child population were retrieved without any limitation of publication date. The suitable papers were selected and carefully studied. A data form designed by author was used to write relevant findings. Results: Preoperative oral examination and comprehensive evaluation of treatment needs is only possible after clinical and radiographic oral examination. Effective collaboration in dental GA team should be made to minimize psychological trauma of children who undergo dental GA. Before conducting comprehensive dental treatment under GA, the general health of the child and the success rate of procedures provided needs to be accurately evaluated. It is noteworthy that determination of the optimal timing for GA dental operation is of great importance. Providing safety with pediatric dental rehabilitation under GA is critical. Conclusions: Besides criteria for case selection of dental GA, some degree of dental practitioner’s judgment is required to make decision. Pre- and post-operative instructions to parents or caregiver decrease the risk of complications. However, trained resuscitation providers, careful monitoring and advanced equipment minimize adverse outcomes.
Resumo:
Previous research with the ratio-bias task found larger response latencies for conflict trials where the heuristic- and analytic-based responses are assumed to be in opposition (e.g., choosing between 1/10 and 9/100 ratios of success) when compared to no-conflict trials where both processes converge on the same response (e.g., choosing between 1/10 and 11/100). This pattern is consistent with parallel dualprocess models, which assume that there is effective, rather than lax, monitoring of the output of heuristic processing. It is, however, unclear why conflict resolution sometimes fails. Ratio-biased choices may increase because of a decline in analytical reasoning (leaving heuristic-based responses unopposed) or to a rise in heuristic processing (making it more difficult for analytic processes to override the heuristic preferences). Using the process-dissociation procedure, we found that instructions to respond logically and response speed affected analytic (controlled) processing (C), leaving heuristic processing (H) unchanged, whereas the intuitive preference for large nominators (as assessed by responses to equal ratio trials) affected H but not C. These findings create new challenges to the debate between dual-process and singleprocess accounts, which are discussed.
Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters
Resumo:
This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit
Resumo:
ABSTRACT:
Resumo:
"Certain of these orders ... have been printed in Col. E. Cruikshank's Documentary history of Niagara." Created on behalf of the Women's Canadian Historical Society of Toronto
Resumo:
13th Congress, 3d session. House. Doc. no. 8.
Resumo:
13th Congress, 3d session. House. Doc. no. 8. -------------------------------------------------------------------------------- October 14, 1814. Read and referred to the Committee of Foreign Relations. Printed by Roger C. Weightman