255 resultados para Infectivity
Resumo:
1. We describe the isolation of viable merozoites from erythrocytes infected with Babesia bovis or Babesia bigemina organisms by ammonium chloride lysis.2. Parasite morphology was examined by both light and transmission electron microscopy. Erythrocyte-free parasites maintain their viability and infectivity, retain their antigenicity and are suitable for use in the indirect fluorescent antibody assay.
Resumo:
Human Papillomaviruses (HPVs) are epitheliotropic viruses, that induce benign and malignant lesions on several body sites. It's a small circular DNA virus, non-enveloped and 75 types have been identified. Frequently HPV 6, 11 (benign lesions) and 16, 18 (malignant lesions) are occurred on mucosa. The infection takes place at the basal layer cells with microlesions, when the virus enters into the cells and looses the capsid. The benign HPV types is associated to cell's genome in epissomal way. In malignant lesions, it integrates into the cell's DNA. HPV viruses are sexually transmitted and responsable for malignant cell transformation. Thus this viruses have an extremely epidemiologic importance. This paper reports a HPV review study about: epidemiology, diagnostic methods and treatment to papillomavirus infection.
Resumo:
PCR and nested-PCR methods were used to assess the frequency of Babesia bovis and Babesia bigemina infection in Boophilus microplus engorged females and eggs and in cattle reared in an area with endemic babesiosis. Blood and the engorged female ticks were from 27 naturally infested calves and 25 crossbred cows. The frequency of both Babesia species was similar in calves and cows (P > 0.05). Babesia bovis was detected in 23 (85.2%) calves and in 25 (100%) cows and B. bigemina was detected in 25 (92.6%) calves and in 21 (84%) cows. Mixed infections with the both Babesia species were identified in 42 animals, 21 in each age category. Of female ticks engorged on calves, 34.9% were negative and single species infection with B. bigemina (56.2%) was significantly more frequent (P < 0.01) than with B. bovis (4.7%). Most of the females (60.8%) engorged on cows did not show Babesia spp. infection and the frequency of single B. bovis infection (17.6%) was similar (P > 0.05) to the frequency of single B. bigemina infection (15.9%). Mixed Babesia infection was lower (P < 0.01) than single species infection in female ticks engorged either in cows (5.7%) or in calves (4.3%). An egg sample from each female was analysed for the presence of Babesia species. Of the egg samples from female ticks infected with B. bovis, 26 (47.3%) were infected while from those from female ticks infected with B. bigemina 141 (76.6%) were infected (P < 0.01). The results showed that although the frequency of both species of Babesia was similar in calves and cows, the infectivity of B. bigemina was higher to ticks fed on calves while to those ticks fed on cows the infectivity of both Babesia species was similar. © 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Membrane fusion is an essential step in the entry of enveloped viruses into their host cells triggered by conformational changes in viral glycoproteins. We have demonstrated previously that modification of vesicular stomatitis virus (VSV) with diethylpyrocarbonate (DEPC) abolished conformational changes on VSV glycoprotein and the fusion reaction catalyzed by the virus. In the present study, we evaluated whether treatment with DEPC was able to inactivate the virus. Infectivity and viral replication were abolished by viral treatment with 0.5 mM DEPC. Mortality profile and inflammatory response in the central nervous system indicated that G protein modification with DEPC eliminates the ability of the virus to cause disease. In addition, DEPC treatment did not alter the conformational integrity of surface proteins of inactivated VSV as demonstrated by transmission electron microscopy and competitive ELISA. Taken together, our results suggest a potential use of histidine (His) modification to the development of a new process of viral inactivation based on fusion inhibition. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Coniothyrium minitans (CM) is hyperparasitic to Sclerotinia sclerotiorum (SS), a pathogen of many economically important crops. In this paper, we describe the isolation of improved mutants of CM, using a UV - irradiation regime, with altered chitinase production and tolerance to high concentration of iprodione, which are effective against SS. Three out of the 59 mutants obtained inhibited the mycelial growth of CM. Infectivity of sclerotia by the new mutants was assayed by the plant-tissue-based system using carrot segments. More than 80% of sclerotia were colonized by the mutants and the wild-type CM. The mutant strains retained ability to produce significant amounts of chitinase. The mutants differed from their wild-type strain in appearance, morphology and sporulation. In conclusion, the results presented here provide evidence that the new biotypes of C. minitans are effective in controlling S. sclerotiorum.
Resumo:
This study focused on representing spatio-temporal patterns of fungal dispersal using cellular automata. Square lattices were used, with each site representing a host for a hypothetical fungus population. Four possible host states were allowed: resistant, permissive, latent or infectious. In this model, the probability of infection for each of the healthy states (permissive or resistant) in a time step was determined as a function of the host's susceptibility, seasonality, and the number of infectious sites and the distance between them. It was also assumed that infected sites become infectious after a pre-specified latency period, and that recovery is not possible. Several scenarios were simulated to understand the contribution of the model's parameters and the spatial structure on the dynamic behaviour of the modelling system. The model showed good capability for representing the spatio-temporal pattern of fungus dispersal over planar surfaces. With a specific problem in mind, the model can be easily modified and used to describe field behaviour, which can contribute to the conservation and development of management strategies for both natural and agricultural systems. © 2012 Elsevier B.V.
Resumo:
Aim: The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Methods and Results: Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13·5 or 54 μg SN ml-1 for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. Conclusions: In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. Significance and Impact of the Study: This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.
Resumo:
Aims: To evaluate mannan oligosaccharide (MOS) and threonine effects on performance, small intestine morphology and Salmonella spp. counts in Salmonella Enteritidis-challenged birds. Methods and Results: One-day-old chicks (1d) were distributed into five treatments: nonchallenged animals fed basal diet (RB-0), animals fed basal diet and infected with Salmonella Enteritidis (RB-I), animals fed high level of threonine and infected (HT-I), birds fed basal diet with MOS and infected (MOS-I), birds fed high level of threonine and MOS and infected (HT+MOS-I). Birds were inoculated at 2d with Salmonella Enteritidis, except RB-0 birds. Chicks fed higher dietary threonine and MOS showed performance similar to RB-0 and intestinal morphology recovery at 8 dpi. Salmonella counts and the number of Salmonella-positive animals were lower in HT+MOS-I compared with other challenged groups. Conclusion: Mannan oligosaccharides and threonine act synergistically, resulting in improved intestinal environment and recovery after Salmonella inoculation. Significance and Impact of the Study: Nutritional approaches may be useful to prevent Salmonella infection in the first week and putative carcass contamination at slaughter. This is the first report on the possible synergistic effect of mannan oligosaccharides and threonine, and further studies should be performed including performance, microbiota evaluation, composition of intestinal mucins and immune assessment. © 2012 The Society for Applied Microbiology.
Resumo:
Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. © 2013 Lima et al.
Resumo:
Eurhizococcus brasiliensis (Wille) (Hemiptera: Margarodidae) is a soil scale that is considered the main pest of vineyards in Brazil. The ant Linepithema micans (Forel) (Hymenoptera: Formicidae) is frequently found associated with this species of scale in infested areas. The effect of the presence of L. micans on the infestation and dispersal capacity of E. brasiliensis on vine roots was measured in a greenhouse, using Paulsen 1103 rootstock seedlings planted in simple and double Gallotti Cages. Treatments measured were: infestation of roots with E. brasiliensis or L. micans, and infestation with both species together. In the experiment using simple Gallotti Cages, with E. brasiliensis associated with L. micans, higher mean numbers of cysts and ants per plant were recorded, a result significantly different from that found for infestation with scale only. When double Gallotti Cages were used, first-instar nymphs were transported between the cages. The results showed that L. micans transports and aids in the attachment of E. brasiliensis to vine plants. © 2013 Entomological Society of America.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)