993 resultados para Inertial Navigation System
Resumo:
The following is an analysis of the role of computer aided surgery by infralabyrinthine-subcochlear approach to the petrous apex for cholesterol granulomas with hearing preservation. In a retrospective case review from 1996 to 2008 six patients were analysed in our tertiary referral centre, otorhinolaryngology outpatient clinic. Excellent intraoperative localisation of the carotid artery, facial nerve and the entrance into the cholesterol cyst of the bone by means of the navigation system was seen. Additionally, the operation time decreased from an initial 4 h down to 2 h. The application of computer-aided surgery allows intraoperative monitoring of the position of the tip of the microsurgical instruments in case of a rare disease and in the delicate area of the petrous apex giving a high security level.
Resumo:
Computer-aided surgery (CAS) allows for real-time intraoperative feedback resulting in increased accuracy, while reducing intraoperative radiation. CAS is especially useful for the treatment of certain pelvic ring fractures, which necessitate the precise placement of screws. Flouroscopy-based CAS modules have been developed for many orthopedic applications. The integration of the isocentric flouroscope even enables navigation using intraoperatively acquired three-dimensional (3D) data, though the scan volume and imaging quality are limited. Complicated and comprehensive pathologies in regions like the pelvis can necessitate a CT-based navigation system because of its larger field of view. To be accurate, the patient's anatomy must be registered and matched with the virtual object (CT data). The actual precision within the region of interest depends on the area of the bone where surface matching is performed. Conventional surface matching with a solid pointer requires extensive soft tissue dissection. This contradicts the primary purpose of CAS as a minimally invasive alternative to conventional surgical techniques. We therefore integrated an a-mode ultrasound pointer into the process of surface matching for pelvic surgery and compared it to the conventional method. Accuracy measurements were made in two pelvic models: a foam model submerged in water and one with attached porcine muscle tissue. Three different tissue depths were selected based on CT scans of 30 human pelves. The ultrasound pointer allowed for registration of virtually any point on the pelvis. This method of surface matching could be successfully integrated into CAS of the pelvis.
Resumo:
The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.
Resumo:
BACKGROUND Accurate needle placement is crucial for the success of percutaneous radiological needle interventions. We compared three guiding methods using an optical-based navigation system: freehand, using a stereotactic aiming device and active depth control, and using a stereotactic aiming device and passive depth control. METHODS For each method, 25 punctures were performed on a non-rigid phantom. Five 1 mm metal screws were used as targets. Time requirements were recorded, and target positioning errors (TPE) were measured on control scans as the distance between needle tip and target. RESULTS Time requirements were reduced using the aiming device and passive depth control. The Euclidian TPE was similar for each method (4.6 ± 1.2-4.9 ± 1.7 mm). However, the lateral component was significantly lower when an aiming device was used (2.3 ± 1.3-2.8 ± 1.6 mm with an aiming device vs 4.2 ± 2.0 mm without). DISCUSSION Using an aiming device may increase the lateral accuracy of navigated needle insertion.
Resumo:
PURPOSE Images from computed tomography (CT), combined with navigation systems, improve the outcomes of local thermal therapies that are dependent on accurate probe placement. Although the usage of CT is desired, its availability for time-consuming radiological interventions is limited. Alternatively, three-dimensional images from C-arm cone-beam CT (CBCT) can be used. The goal of this study was to evaluate the accuracy of navigated CBCT-guided needle punctures, controlled with CT scans. METHODS Five series of five navigated punctures were performed on a nonrigid phantom using a liver specific navigation system and CBCT volumetric dataset for planning and navigation. To mimic targets, five titanium screws were fixed to the phantom. Target positioning accuracy (TPECBCT) was computed from control CT scans and divided into lateral and longitudinal components. Additionally, CBCT-CT guidance accuracy was deducted by performing CBCT-to-CT image coregistration and measuring TPECBCT-CT from fused datasets. Image coregistration was evaluated using fiducial registration error (FRECBCT-CT) and target registration error (TRECBCT-CT). RESULTS Positioning accuracies in lateral directions pertaining to CBCT (TPECBCT = 2.1 ± 1.0 mm) were found to be better to those achieved from previous study using CT (TPECT = 2.3 ± 1.3 mm). Image coregistration error was 0.3 ± 0.1 mm, resulting in an average TRE of 2.1 ± 0.7 mm (N = 5 targets) and average Euclidean TPECBCT-CT of 3.1 ± 1.3 mm. CONCLUSIONS Stereotactic needle punctures might be planned and performed on volumetric CBCT images and controlled with multidetector CT with positioning accuracy higher or similar to those performed using CT scanners.
Resumo:
OBJECTIVE Angiographic C-arm CT may allow performing percutaneous stereotactic tumor ablations in the interventional radiology suite. Our purpose was to evaluate the accuracy of using C-arm CT for single and multimodality image fusions and to compare the targeting accuracy of liver lesions with the reference standard of MDCT. MATERIALS AND METHODS C-arm CT and MDCT scans were obtained of a nonrigid rapid prototyping liver phantom containing five 1-mm targets that were placed under skin-simulating deformable plastic foam. Target registration errors of image fusion were evaluated for single-modality and multimodality image fusions. A navigation system and stereotactic aiming device were used to evaluate target positioning errors on postinterventional scans with the needles in place fused with the C-arm CT or MDCT planning images. RESULTS Target registration error of the image fusion showed no significant difference (p > 0.05) between both modalities. In five series with a total of 25 punctures for each modality, the lateral target positioning error (i.e., the lateral distance between the needle tip and the planned trajectory) was similar for C-arm CT (mean [± SD], 1.6 ± 0.6 mm) and MDCT (1.82 ± .97 mm) (p = 0.33). CONCLUSION In a nonrigid liver phantom, angiographic C-arm CT may provide similar image fusion accuracy for comparison of intra- and postprocedure control images with the planning images and enables stereotactic targeting accuracy similar to that of MDCT.
Resumo:
Objective In order to benefit from the obvious advantages of minimally invasive liver surgery there is a need to develop high precision tools for intraoperative anatomical orientation, navigation and safety control. In a pilot study we adapted a newly developed system for computer-assisted liver surgery (CALS) in terms of accuracy and technical feasibility to the specific requirements of laparoscopy. Here, we present practical aspects related to laparoscopic computer assisted liver surgery (LCALS). Methods Our video relates to a patient presenting with 3 colorectal liver metastases in Seg. II, III and IVa who was selected in an appropriate oncological setting for LCALS using the CAScination system combined with 3D MEVIS reconstruction. After minimal laparoscopic mobilization of the liver, a 4- landmark registration method was applied to enable navigation. Placement of microwave needles was performed using the targeting module of the navigation system and correct needle positioning was confirmed by intraoperative sonography. Ablation of each lesion was carried out by application of microwave energy at 100 Watts for 1 minute. Results To acquire an accurate (less 0.5 cm) registration, 4 registration cycles were necessary. In total, seven minutes were required to accomplish precise registration. Successful ablation with complete response in all treated areas was assessed by intraoperative sonography and confirmed by postoperative CT scan. Conclusions This teaching video demonstrates the theoretical and practical key points of LCALS with a special emphasis on preoperative planning, intraoperative registration and accuracy testing by laparoscopic methodology. In contrast to mere ultrasound-guided ablation of liver lesions, LCALS offers a more dimensional targeting and higher safety control. This is currently also in routine use to treat vanishing lesions and other difficult to target focal lesions within the liver.
Resumo:
For patients with extensive bilobar colorectal liver metastases (CRLM), initial surgery may not be feasible and a multimodal approach including microwave ablation (MWA) provides the only chance for prolonged survival. Intraoperative navigation systems may improve the accuracy of ablation and surgical resection of so-called "vanishing lesions", ultimately improving patient outcome. Clinical application of intraoperative navigated liver surgery is illustrated in a patient undergoing combined resection/MWA for multiple, synchronous, bilobar CRLM. Regular follow-up with computed tomography (CT) allowed for temporal development of the ablation zones. Of the ten lesions detected in a preoperative CT scan, the largest lesion was resected and the others were ablated using an intraoperative navigation system. Twelve months post-surgery a new lesion (Seg IVa) was detected and treated by trans-arterial embolization. Nineteen months post-surgery new liver and lung metastases were detected and a palliative chemotherapy started. The patient passed away four years after initial diagnosis. For patients with extensive CRLM not treatable by standard surgery, navigated MWA/resection may provide excellent tumor control, improving longer-term survival. Intraoperative navigation systems provide precise, real-time information to the surgeon, aiding the decision-making process and substantially improving the accuracy of both ablation and resection. Regular follow-ups including 3D modeling allow for early discrimination between ablation zones and recurrent tumor lesions.
Resumo:
Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of hip dysplasia. The aim of PAO is to increase acetabular coverage of the femoral head and to reduce contact pressures by reorienting the acetabulum fragment after PAO. The success of PAO significantly depends on the surgeon’s experience. Previously, we have developed a computer-assisted planning and navigation system for PAO, which allows for not only quantifying the 3D hip morphology for a computer-assisted diagnosis of hip dysplasia but also a virtual PAO surgical planning and simulation. In this paper, based on this previously developed PAO planning and navigation system, we developed a 3D finite element (FE) model to investigate the optimal acetabulum reorientation after PAO. Our experimental results showed that an optimal position of the acetabulum can be achieved that maximizes contact area and at the same time minimizes peak contact pressure in pelvic and femoral cartilages. In conclusion, our computer-assisted planning and navigation system with FE modeling can be a promising tool to determine the optimal PAO planning strategy.
Resumo:
During the fourth Antarctic voyage ANT-IV of the research icebreaker POLARSTERN standard meteorological measurements have been performed. The measurements include 3-hourly synoptic observations as well as daily upper air soundings. The measurements started on September 6 1985 at Bremerhaven and were terminated at April 28 1986 in Punta Arenas. The 3-hourly synoptic observations are performed following the instructions of the FM 13 ships code defined by the World Meteorological Organization (WMO). The datasets include automatic measurements such as mean ship's speed, wind velocity, wind direction, air temperature, water temperature as well as visual observations such as total cloud amount, present weather, clouds, height and period of swell waves, ice classification. The visual observation are not performed during night time. For the upper air soundings VAISALA RS80 radiosondes, carried by helium-filled balloons (TOTEX 350 - 1500) were used. Data reception and evaluation were carried out by a MicroCora System (VAISALA). The upper air soundings include profile measurements of pressure, temperature, relative humidity and wind vector. Usually the soundings started at the heliport (10 m above sea level) and terminated between 15 and 37 km. The height of the measurements was calculated by applying the barometric formula. The wind vector was determined with the aid of the OMEGA navigation system.
Resumo:
El objetivo de esta tesis es el desarrollo de un sistema completo de navegación, aprendizaje y planificación para un robot móvil. Dentro de los innumerables problemas que este gran objetivo plantea, hemos dedicado especial atención al problema del conocimiento autónomo del mundo. Nuestra mayor preocupación ha sido la de establecer mecanismos que permitan, a partir de información sensorial cruda, el desarrollo incremental de un modelo topológico del entorno en el que se mueve el robot. Estos mecanismos se apoyan invariablemente en un nuevo concepto propuesto en esta tesis: el gradiente sensorial. El gradiente sensorial es un dispositivo matemático que funciona como un detector de sucesos interesantes para el sistema. Una vez detectado uno de estos sucesos, el robot puede identificar su situación en un mapa topológico y actuar en consecuencia. Hemos denominado a estas situaciones especiales lugares sensorialmente relevantes, ya que (a) captan la atención del sistema y (b) pueden ser identificadas utilizando la información sensorial. Para explotar convenientemente los modelos construidos, hemos desarrollado un algoritmo capaz de elaborar planes internalizados, estableciendo una red de sugerencias en los lugares sensorialmente relevantes, de modo que el robot encuentra en estos puntos una dirección recomendada de navegación. Finalmente, hemos implementado un sistema de navegación robusto con habilidades para interpretar y adecuar los planes internalizados a las circunstancias concretas del momento. Nuestro sistema de navegación está basado en la teoría de campos de potencial artificial, a la que hemos incorporado la posibilidad de añadir cargas ficticias como ayuda a la evitación de mínimos locales. Como aportación adicional de esta tesis al campo genérico de la ciencia cognitiva, todos estos elementos se integran en una arquitectura centrada en la memoria, lo que pretende resaltar la importancia de ésta en los procesos cognitivos de los seres vivos y aporta un giro conceptual al punto de vista tradicional, centrado en los procesos. The general objective of this thesis is the development of a global navigation system endowed with planning and learning features for a mobile robot. Within this general objective we have devoted a special effort to the autonomous learning problem. Our main concern has been to establish the necessary mechanisms for the incremental development of a topological model of the robot’s environment using the sensory information. These mechanisms are based on a new concept proposed in the thesis: the sensory gradient. The sensory gradient is a mathematical device which works like a detector of “interesting” environment’s events. Once a particular event has been detected the robot can identify its situation in the topological map and to react accordingly. We have called these special situations relevant sensory places because (a) they capture the system’s attention and (b) they can be identified using the sensory information. To conveniently exploit the built-in models we have developed an algorithm able to make internalized plans, establishing a suggestion network in the sensory relevant places in such way that the robot can find at those places a recommended navigation direction. It has been also developed a robust navigation system able to navigate by means of interpreting and adapting the internalized plans to the concrete circumstances at each instant, i.e. a reactive navigation system. This reactive system is based on the artificial potential field approach with the additional feature introduced in the thesis of what we call fictitious charges as an aid to avoid local minima. As a general contribution of the thesis to the cognitive science field all the above described elements are integrated in a memory-based architecture, emphasizing the important role played by the memory in the cognitive processes of living beings and giving a conceptual turn in the usual process-based approach.
Resumo:
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps.
Resumo:
We propose the use of the "infotaxis" search strategy as the navigation system of a robotic platform, able to search and localize infectious foci by detecting the changes in the profile of volatile organic compounds emitted by and infected plant. We builded a simple and cost effective robot platform that substitutes odour sensors in favour of light sensors and study their robustness and performance under non ideal conditions such as the exitence of obstacles due to land topology or weeds.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot. The result is an instance of the model grammar that implements the robotic system and is independent of the sensing devices used for perception and interaction. As a conclusion the Virtual Worlds Generator adds value in the simulation of virtual worlds since the definition can be done formally and independently of the peculiarities of the supporting devices.