808 resultados para Index Terms|Digital Learning Objects|Interactivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reusing Learning Objects saves time and reduce development costs. Hence, achieving their interoperability in multiple contexts is essential when creating a Learning Object Repository. On the other hand, novel web videoconference services are available due to technological advancements. Several benefits can be gained by integrating Learning Objects into these services. For instance, they can allow sharing, co-viewing and synchronized co-browsing of these resources at the same time that provide real time communication. However, several efforts need to be undertaken to achieve the interoperability with these systems. In this paper, we propose a model to integrate the resources of the Learning Object Repositories into web videoconference services. The experience of applying this model in a real e-Learning scenario achieving interoperability with two different web videoconference services is also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reusing Learning Objects saves time and reduce development costs. Hence, achieving their interoperability in multiple contexts is essential when creating a Learning Object Repository. On the other hand, novel web videoconference services are available due to technological advancements. Several benefits can be gained by integrating Learning Objects into these services. For instance, they can allow sharing, co-viewing and synchronized co-browsing of these resources at the same time that provide real time communication. However, several efforts need to be undertaken to achieve the interoperability with these systems. In this paper, we propose a model to integrate the resources of the Learning Object Repositories into web videoconference services. The experience of applying this model in a real e-Learning scenario achieving interoperability with two different web videoconference services is also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic evaluation of Learning Objects is essential to make high quality Web-based education possible. For this reason, several educational repositories and e-Learning systems have developed their own evaluation models and tools. However, the differences of the context in which Learning Objects are produced and consumed suggest that no single evaluation model is sufficient for all scenarios. Besides, no much effort has been put in developing open tools to facilitate Learning Object evaluation and use the quality information for the benefit of end users. This paper presents LOEP, an open source web platform that aims to facilitate Learning Object evaluation in different scenarios and educational settings by supporting and integrating several evaluation models and quality metrics. The work exposed in this paper shows that LOEP is capable of providing Learning Object evaluation to e-Learning systems in an open, low cost, reliable and effective way. Possible scenarios where LOEP could be used to implement quality control policies and to enhance search engines are also described. Finally, we report the results of a survey conducted among reviewers that used LOEP, showing that they perceived LOEP as a powerful and easy to use tool for evaluating Learning Objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluating and measuring the pedagogical quality of Learning Objects is essential for achieving a successful web-based education. On one hand, teachers need some assurance of quality of the teaching resources before making them part of the curriculum. On the other hand, Learning Object Repositories need to include quality information into the ranking metrics used by the search engines in order to save users time when searching. For these reasons, several models such as LORI (Learning Object Review Instrument) have been proposed to evaluate Learning Object quality from a pedagogical perspective. However, no much effort has been put in defining and evaluating quality metrics based on those models. This paper proposes and evaluates a set of pedagogical quality metrics based on LORI. The work exposed in this paper shows that these metrics can be effectively and reliably used to provide quality-based sorting of search results. Besides, it strongly evidences that the evaluation of Learning Objects from a pedagogical perspective can notably enhance Learning Object search if suitable evaluations models and quality metrics are used. An evaluation of the LORI model is also described. Finally, all the presented metrics are compared and a discussion on their weaknesses and strengths is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years Web has become mainstream medium for communication and information dissemination. This paper presents approaches and methods for adaptive learning implementation, which are used in some contemporary web-interfaced Learning Management Systems (LMSs). The problem is not how to create electronic learning materials, but how to locate and utilize the available information in personalized way. Different attitudes to personalization are briefly described in section 1. The real personalization requires a user profile containing information about preferences, aims, and educational history to be stored and used by the system. These issues are considered in section 2. A method for development and design of adaptive learning content in terms of learning strategy system support is represented in section 3. Section 4 includes a set of innovative personalization services that are suggested by several very important research projects (SeLeNe project, ELENA project, etc.) dated from the last few years. This section also describes a model for role- and competency-based learning customization that uses Web Services approach. The last part presents how personalization techniques are implemented in Learning Grid-driven applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): K.3.1, K.3.2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ageing of the population is a worldwide phenomenon. Numerous ICT-based solutions have been developed for elderly care but mainly connected to the physiological and nursing aspects in services for the elderly. Social work is a profession that should pay attention to the comprehensive wellbeing and social needs of the elderly. Many people experience loneliness and depression in their old age, either as a result of living alone or due to a lack of close family ties and reduced connections with their culture of origin, which results in an inability to participate actively in community activities (Singh & Misra, 2009). Participation in society would enhance the quality of life. With the development of information technology, the use of technology in social work practice has risen dramatically. The aim of this literature review is to map out the state of the art of knowledge about the usage of ICT in elderly care and to figure out research-based knowledge about the usability of ICT for the prevention of loneliness and social isolation of elderly people. The data for the current research comes from the core collection of the Web of Science and the data searching was performed using Boolean? The searching resulted in 216 published English articles. After going through the topics and abstracts, 34 articles were selected for the data analysis that is based on a multi approach framework. The analysis of the research approach is categorized according to some aspects of using ICT by older adults from the adoption of ICT to the impact of usage, and the social services for them. This literature review focused on the function of communication by excluding the applications that mainly relate to physical nursing. The results show that the so-called ‘digital divide’ still exists, but the older adults have the willingness to learn and utilise ICT in daily life, especially for communication. The data shows that the usage of ICT can prevent the loneliness and social isolation of older adults, and they are eager for technical support in using ICT. The results of data analysis on theoretical frames and concepts show that this research field applies different theoretical frames from various scientific fields, while a social work approach is lacking. However, a synergic frame of applied theories will be suggested from the perspective of social work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artigo tem como objetivo mostrar que é possível incentivar a aprendizagem em museus através da construção de comunidades virtuais, com base em repositórios de objetos de aprendizagem (OA), ferramentas comunicacionais e produção de OA por parte dos visitantes. O enfoque é incentivar a aprendizagem no sentido de motivar a participação/envolvimento do visitante nas atividades da comunidade virtual. Nesta perspectiva, partimos do pressuposto de que a informação, a comunicação, a interação e a colaboração são essenciais para o processo de aprender no contexto informal dos museus. Acreditamos que a interação e a colaboração são partes integrantes do processo de aprendizagem proporcionado por comunidades virtuais e que o principal recurso de aprendizagem oferecido nessas comunidades são os objetos de aprendizagem. Assim sendo, por meio de um entendimento do aprender baseado na comunicação e na linguagem, percebemos os museus interativos como espaços discursivos em que os visitantes mergulham e por eles são modificados. Neste sentido, argumentamos que as comunidades virtuais de aprendizagem, com a possibilidade de virtualizar a linguagem, são excelentes mecanismos para ampliar o poder comunicacional dos museus, criando novas estratégias comunicativas. Para atingir o objetivo, foi necessário reunir quatro conceitos técnicos da área de informática, são eles: comunidades virtuais de aprendizagem; objetos de aprendizagem; metadados e mapas de tópicos. A junção destes conceitos permitiu a construção do ambiente de comunidade virtual, denominada CV-Muzar. Diante do exposto, de modo a identificar os meios pelos quais se podem motivar os visitantes a realmente produzirem novos conhecimentos durante sua visita informal ao museu, examinando essa questão tanto do ponto de vista quantitativo, como também qualitativamente, foi realizada uma experimentação do ambiente com um grupo de pessoas convidadas segundo suas áreas de formação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To describe orthoptic student satisfaction in a blended learning environment. Methods: Blended learning and teaching approaches that include a mix of sessions with elearning are being used since 2011/2012 involving final year (4th year) students from an orthoptic program. This approach is used in the module of research in orthoptics during the 1 semester. Students experienced different teaching approaches, which include seminars, tutorial group discussions and e-learning activities using the moodle platform. The Constructivist OnLine Learning Environment Survey (COLLES ) was applied at the end of the semester with 24 questions grouped in 6 dimensions with 4 items each: Relevance to professional practice, Reflection, Interactivity, Tutor support, Peer support and Interpretation. A 5-point Likert scale was used to score each individual item of the questionnaire (1 - almost never to 5 – almost always). The sum of items in each dimension ranged between 4 (negative perception) and 20 (positive perception). Results: Twenty-four students replied to the questionnaire. Positive points were related with Relevance (16.13±2.63), Reflection (16.46±2.45), Tutor support (16.29±2.10) and Interpretation (15.38±2.16). The majority of the students (n=18; 75%) think that the on-line learning is relevant to students’ professional practice. Critical reflections about learning contents were frequent (n=19; 79.17%). The tutor was able to stimulate critical thinking (n=21; 87.50%), encouraged students to participate (n=18; 75%) and understood well the student’s contributions (n=15; 62.50%). Less positive points were related with Interactivity (14.13±2.77) and Peer support (13.29±2.60). Response from the colleagues to ideas (n=11; 45.83%) and valorization of individual contributions (n=10; 41.67%) scored lower than other items. Conclusions: The flow back and forth between face-to-face and online learning situations helps the students to make critical reflections. The majority of the students are satisfied with a blended e-learning system environment. However, more work needs to be done to improve interactivity and peer support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barnsley College’s level 3 and 4 diplomas in digital learning design are delivered in one year, enabling apprentices to be employed alongside their studies in the college’s innovative learning design company, Elephant Learning Designs. The limited time this allows for delivery and assessment has prompted course leaders to rethink their approach to course structure, assessment and feedback design, and the role of technology in evidence collection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os avanços e a disseminação do uso das Tecnologias de Informação e Comunicação (TIC) descortinam novas perspetivas para a educação com suporte em ambientes digitais de aprendizagem usados via internet (Fiolhais & Trindade, 2003). A plataforma usada no Projeto Matemática Ensino (PmatE) da Universidade de Aveiro (UA) é uma das ferramentas informáticas que suporta esses ambientes através da avaliação baseada no Modelo Gerador de Questões (MGQ), possibilitando a obtenção da imagem do progresso feito pelos alunos (Vieira, Carvalho & Oliveira, 2004). Reconhecendo a importância didática desta ferramenta, já demonstrada noutras investigações (por exemplo, Carvalho, 2011; Pais de Aquino, 2013; Peixoto, 2009), o presente estudo tem como objetivo geral desenvolver material didático digital de Física, no contexto do programa moçambicano de Física da 12ª classe, para alunos e professores sobre radiações e conteúdos da Física Moderna. Pretendeu-se, ainda, propor estratégias de trabalho com recurso às TIC para a melhoria da qualidade das aprendizagens nesta disciplina. O estudo assentou nas três seguintes questões de investigação: (a) Como conceber instrumentos de avaliação das aprendizagens baseadas no modelo gerador de questões para o estudo das radiações e conteúdos da Física Moderna, no contexto do programa moçambicano de Física da 12ª classe? (b) Que potencialidades e constrangimentos apresentam esses instrumentos quando implementados com alunos e professores? (c) De que forma o conhecimento construído pode ser mobilizado para outros temas da Física e para o ensino das ciências em geral? O estudo seguiu uma metodologia de Estudos de Desenvolvimento, de natureza mista, que compreendeu as fases da Análise, Design, Desenvolvimento e Avaliação, seguindo como paradigma um estudo de cariz exploratório, com uma vertente de estudo de caso. Assim, na Análise, foi discutido o contexto da educação em Moçambique e a problemática da abordagem das radiações e conteúdos de Física Moderna no ensino secundário no quadro desafiante que se coloca atualmente à educação científica. No Design foram avaliadas as abordagens dasTIC no ensino e aprendizagem da Física e das ciências em geral e construída a árvore de objetivos nos conteúdos referidos na fase anterior. Na fase do Desenvolvimento foram construídos os instrumentos de recolha de dados, elaborados os protótipos de MGQ e sua posterior programação, validação e testagem em formato impresso no estudo exploratório. Na Avaliação, foi conduzido o estudo principal com a aplicação dos modelos no formato digital e feita sua avaliação, o que incluiu a administração de inquéritos por questionário a alunos e professores. Os resultados indicam que na conceção de MGQ, a definição dos objetivos de aprendizagem em termos comportamentais é fundamental na formulação de questões e na análise dos resultados da avaliação com o objetivo de reajustar as estratégias didáticas. Apontam também que a plataforma do PmatE que suporta os MGQ, embora possua constrangimentos devido a sua dependência da internet e limitações de ordem didática, contribui positivamente na aprendizagem e na identificação das dificuldades e principais erros dos alunos, por um lado. Por outro, estimula através da avaliação os processos de assimilação e acomodação do conhecimento. O estudo recomenda a necessidade de mudanças nas práticas de ensino e de aprendizagem para que seja possível a utilização de conteúdos digitais como complemento à abordagem didática de conteúdos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde hace 6 años el grupo de investigación E-Virtual de laUniversidad de Medellín viene trabajando en la implementaciónde asignaturas bimodales en la Institución. En el 2009, con elapoyo de MEN, se implementó la modalidad a distancia conmetodología virtual en el modelo pedagógico de la Universidad.Estas nuevas experiencias llevaron al Grupo a cuestionarsesobre las características pedagógicas y didácticas a teneren cuenta cuando se combinan la educación presencial y lavirtual. Para ello se indagó con profesores y estudiantes sobresu percepción al respecto. Para la recolección de informaciónse combinaron técnicas cualitativas y cuantitativas, que hanarrojado interesantes resultados, entre ellos proceso deinducción, interacciones comunicativas, Objetos Virtuales deAprendizaje y uso de la plataforma virtual.En este artículo se darán a conocer algunos resultados de lainvestigación, cuáles han sido los aspectos positivos de estaexperiencia y cuáles son las áreas a mejorar.