923 resultados para Image quality perception
Resumo:
This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.
Resumo:
In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.
Resumo:
This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4
Resumo:
This thesis presents two graphical user interfaces for the project DigiQ - Fusion of Digital and Visual Print Quality, a project for computationally modeling the subjective human experience of print quality by measuring the image with certain metrics. After presenting the user interfaces, methods for reducing the computation time of several of the metrics and the image registration process required to compute the metrics, and details of their performance are given. The weighted sample method for the image registration process was able to signifigantly decrease the calculation times while resulting in some error. The random sampling method for the metrics greatly reduced calculation time while maintaining excellent accuracy, but worked with only two of the metrics.
Resumo:
The problem of understanding how humans perceive the quality of a reproduced image is of interest to researchers of many fields related to vision science and engineering: optics and material physics, image processing (compression and transfer), printing and media technology, and psychology. A measure for visual quality cannot be defined without ambiguity because it is ultimately the subjective opinion of an “end-user” observing the product. The purpose of this thesis is to devise computational methods to estimate the overall visual quality of prints, i.e. a numerical value that combines all the relevant attributes of the perceived image quality. The problem is limited to consider the perceived quality of printed photographs from the viewpoint of a consumer, and moreover, the study focuses only on digital printing methods, such as inkjet and electrophotography. The main contributions of this thesis are two novel methods to estimate the overall visual quality of prints. In the first method, the quality is computed as a visible difference between the reproduced image and the original digital (reference) image, which is assumed to have an ideal quality. The second method utilises instrumental print quality measures, such as colour densities, measured from printed technical test fields, and connects the instrumental measures to the overall quality via subjective attributes, i.e. attributes that directly contribute to the perceived quality, using a Bayesian network. Both approaches were evaluated and verified with real data, and shown to predict well the subjective evaluation results.
Resumo:
In this paper, an improved technique for evolving wavelet coefficients refined for compression and reconstruction of fingerprint images is presented. The FBI fingerprint compression standard [1, 2] uses the cdf 9/7 wavelet filter coefficients. Lifting scheme is an efficient way to represent classical wavelets with fewer filter coefficients [3, 4]. Here Genetic algorithm (GA) is used to evolve better lifting filter coefficients for cdf 9/7 wavelet to compress and reconstruct fingerprint images with better quality. Since the lifting filter coefficients are few in numbers compared to the corresponding classical wavelet filter coefficients, they are evolved at a faster rate using GA. A better reconstructed image quality in terms of Peak-Signal-to-Noise-Ratio (PSNR) is achieved with the best lifting filter coefficients evolved for a compression ratio 16:1. These evolved coefficients perform well for other compression ratios also.
Resumo:
This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).
Resumo:
Retinal blurring resulting from the human eye's depth of focus has been shown to assist visual perception. Infinite focal depth within stereoscopically displayed virtual environments may cause undesirable effects, for instance, objects positioned at a distance in front of or behind the observer's fixation point will be perceived in sharp focus with large disparities thereby causing diplopia. Although published research on incorporation of synthetically generated Depth of Field (DoF) suggests that this might act as an enhancement to perceived image quality, no quantitative testimonies of perceptional performance gains exist. This may be due to the difficulty of dynamic generation of synthetic DoF where focal distance is actively linked to fixation distance. In this paper, such a system is described. A desktop stereographic display is used to project a virtual scene in which synthetically generated DoF is actively controlled from vergence-derived distance. A performance evaluation experiment on this system which involved subjects carrying out observations in a spatially complex virtual environment was undertaken. The virtual environment consisted of components interconnected by pipes on a distractive background. The subject was tasked with making an observation based on the connectivity of the components. The effects of focal depth variation in static and actively controlled focal distance conditions were investigated. The results and analysis are presented which show that performance gains may be achieved by addition of synthetic DoF. The merits of the application of synthetic DoF are discussed.
Resumo:
Perceptual multimedia quality is of paramount importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse, synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown.
Resumo:
O cenário atual das organizações revela importantes mudanças. A análise de seus resultados mercadológicos está sendo realizada de um modo bastante diferente de tempos atrás. Hoje a avaliação das empresas necessita ultrapassar seus resultados quantitativos. Com isso, as corporações buscam ferramentas para mensurar variáveis qualitativas: desejam saber de sua credibilidade, sua imagem e a percepção de seu posicionamento mercadológico. Neste contexto, o objetivo do presente estudo é identificar e analisar os formatos de avaliação que são utilizados pelas empresas para mensurar a efetividade dos resultados qualitativos da organização na perspectiva dos conceitos de reconhecimento, reputação, impressão, identidade empresarial, imagem, qualidade e satisfação. Na análise das evidências coletadas na empresa estudo de caso foi identificado que os processos do planejamento estratégico e a sua vinculação a um programa de qualidade, com seu respectivo processo de avaliação, são os principais parâmetros para mensurar os resultados qualitativos. Estes critérios e análises, juntamente com o controle e acompanhamento das metas e indicadores oriundos do planejamento estratégico, são os orientadores do processo de avaliação dos resultados desta empresa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present the construction of a homogeneous phantom to be used in simulating the scattering and absorption of X-rays by a standard patient chest and skull when irradiated laterally. This phantom consisted of Incite and aluminium plates with their thickness determined by a tomographic exploratory method applied to the anthropomorphic phantom. Using this phantom, an optimized radiographic technique was established for chest and skull of standard sized patient in lateral view. Images generated with this optimized technique demonstrated improved image quality and reduced radiation doses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)