964 resultados para Illinois. Division of Soil and Water Conservation
Resumo:
针对密云水库上游承德"21世纪水资源可持续利用项目"中水土流失治理后来水减少,加剧下游城市(北京)水资源供需矛盾的问题,探讨集水区减少水土保持用水,增加流域产水量,从而水资源在下游(首都圈)发挥最大效益的思路。在将流域分成3种类型区的基础上,提出了流域分区治理方案及其标准:1)生态产水功能区,以增加产水供给下游为主要目的,提出以需水量最低的低覆盖度草地配置为主的水土流失坡面治理模式和减少蓄水、增大拦沙的弱化与强化相结合的沟道治理模式;2)生产生活功能区,以满足流域基本粮食生产为主要目的,提出以黄土丘陵区坝地为主的水土流失治理模式及其标准;3)生态产水与生产生活复合功能区,兼顾二者功能,提出以需水量中等的灌木林和疏林配置为主的水土流失治理模式及标准。
Resumo:
The novel polyetherethersulfone (PES-C) prepared from phenol-phthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, the PES-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. The sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PES-C in sodium form was made by IR. Some properties of the sulfonated PES-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor have also been discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Water vapor absorption and desorption by poly (phenylene oxide) (PPO) and sulfonated PPO (SPPO) membranes were studied at a constant temperature of 30-degrees-C and over a broad range of water activity (0.05 less-than-or-equal-to a < 0.8) by the weighing
Resumo:
Poly(2,6-dimethylphenylene oxide) (PPO) was sulfonated to varying degrees using different sulfonating agents. Physical properties such as solubility, density, and thermal properties were studied for both PPO and sulfonated PPO (SPPO) with different degree
Resumo:
The permeation behaviors of water vapor and gases were studied for both PPO and SPPO of different sulfonation degree. It was found that the permeability of water vapor increased, and those of oxygen and nitrogen decreased; thus the selectivity for water v
Resumo:
Aims: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. Methods and Results: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. Conclusion: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. Significance and Impact of the Study: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.