940 resultados para Identification method
Resumo:
OBJECTIVE: To verify the effectiveness of the support group in the identification of family variables linked to epilepsy. METHOD: Pre-test were applied to parents of 21 children with benign epilepsy of childhood recently diagnosed, from 5 to 15 years, who participated in the groups at HC/Unicamp. There was a presentation of an educational video, discussion and application of the post-test 1. After six months, the post-test 2 was applied. RESULTS: The beliefs were: fear of swallowing the tongue during the seizures (76.19%) and of a future mental disease (66.67%). Facing the epilepsy, fear and sadness appeared. 76.19% of the parents presented overprotection and 90.48%, expected a new seizure. In the post-test 1, the parents affirmed that the information offered had modified the beliefs. In the post-test 2, 80.95% didn't report great doubts about epilepsy and 90.48% considered their relationship with their children better. CONCLUSIONS: The demystification of beliefs supplied from the groups influenced the family positively, prevented behavior alterations and guaranteed effective care in the attendance to the child with epilepsy.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The mineralogical characterization through mineral quantification of Brazilian soils by X-ray diffraction data using the Rietveld Method is not common. A mineralogical quantification of an Acric Ferralsol from the Ponta Grossa region, state of Paraná, Brazil, was carried out using this Method with X-Ray Diffraction data to verify if this method was suitable for mineral quantification of a highly-weathered soil. The A, AB and B3 horizons were fractioned to separate the different particle sizes: clay, silt, fine sand (by Stokes Law) and coarse sand fractions (by sieving), with the procedure free of chemical treatments. X-ray Fluorescence, Inductively Coupled Plasma Atomic Emission Spectrometry, Infrared Spectroscopy and Mössbauer Spectroscopy were used in order to assist the mineral identification and quantification. The Rietveld Method enabled the quantification of the present minerals. In a general way, the quantitative mineralogical characterization by the Rietveld Method revealed that quartz, gibbsite, rutile, hematite, goethite, kaolinite and halloysite were present in the clay and silt fractions of all horizons. The silt fractions of the deeper horizons were different from the more superficial ones due to the presence of large amounts of quartz. The fine and the coarse sand fractions are constituted mainly by quartz. Therefore, a mineralogical quantification of the finer fraction (clay and silt) by the Rietveld Method was successful.
Resumo:
An investigation was carried out to study the potential use of the angular distribution of scattered photons by human breast samples for a rapid identification of neoplasias of breast tissues. This technique has possible applications as diagnostic aid for breast cancer. In this work, a commercial powder diffractometer was used to obtain the scattering profiles from breast tissues histopathologically classified as normal breast tissues, fibroadenomas (benign breast diseases) and carcinomas (malignant breast diseases), in the interval 0.02 angstrom(-1) < x < 0.62 angstrom(-1). The experimental methods and data corrections are discussed in detail, and they included background subtraction, polarization, self-attenuation and geometric effects. The validation of the experimental procedure was achieved through an analysis of water sample. The results showed that the scattering profile is a unique impression of each type of tissue, being correlated with their microscopic morphological features. Multivariate analysis was applied to these profiles in order to verify if the information carried by these scattering profiles allow the differentiation between normal, benign and malignant breast tissues. The statistical analysis results showed that a correct identification of 75% of the analyzed samples is accomplished. The values of sensibility and specificity of this method in correctly differentiating between normal and neoplastic samples were 95.6% and 82.3%, respectively, while the values for differentiation between benign and malignant neoplasias were 78.6% and 62.5%. These initial results indicate the feasible use of commercial powder diffractometer to provide a rapid diagnostic with a high sensitivity.
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
This work examines the sources of moisture affecting the semi-arid Brazilian Northeast (NEB) during its pre-rainy and rainy season (JFMAM) through a Lagrangian diagnosis method. The FLEXPART model identifies the humidity contributions to the moisture budget over a region through the continuous computation of changes in the specific humidity along back or forward trajectories up to 10 days period. The numerical experiments were done for the period that spans between 2000 and 2004 and results were aggregated on a monthly basis. Results show that besides a minor local recycling component, the vast majority of moisture reaching NEB area is originated in the south Atlantic basin and that the nearby wet Amazon basin bears almost no impact. Moreover, although the maximum precipitation in the ""Poligono das Secas'' region (PS) occurs in March and the maximum precipitation associated with air parcels emanating from the South Atlantic towards PS is observed along January to March, the highest moisture contribution from this oceanic region occurs slightly later (April). A dynamical analysis suggests that the maximum precipitation observed in the PS sector does not coincide with the maximum moisture supply probably due to the combined effect of the Walker and Hadley cells in inhibiting the rising motions over the region in the months following April.
Resumo:
Objective: This investigation aimed to identify and analyze the general and specific competencies of nurses in the primary health care practice of Brazil. Design: The Delphi Technique was used as the method of study. Sample: 2 groups of participants were selected: One contained primary health care nurses (n=52) and the other specialists (n=57), including public health nurses and public or community health faculty. Measurements: 3 questionnaires were developed for the study. The first asked participants to indicate general and specific competencies, which were compiled into a list for each group. A Likert scale of 1-5 was added to these 2 lists in the second and third questionnaires. A consensus criterion of 75% for score 4 or 5 was adopted. Results: In the nurses` group, 17 general and 8 specific competencies reached the consensus criterion; 19 general and 9 specific competencies reached the criterion in the specialists` group. These competencies were classified into 10 domains: professional values, communication, teamwork, management, community-oriented, health promotion, problem solving, health care, and education and basic public health sciences. Conclusions: These competencies reflect Brazilian health policy and constitute a reference for health professional practice and education.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.