976 resultados para ION SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion exchange resins are used for many purposes in various areas of science and commerce. One example is the use of cation exchange resins in the nuclear industry for the clean up of radioactively contaminated water (for example the removal of 137Cs). However, during removal of radionuclides, the resin itself becomes radioactively contaminated, and must be treated as Intermediate Level Waste. This radioactive contamination of the resin creates a disposal problem. Conventionally, there are two main avenues of disposal for industrial wastes, landfill burial or incineration. However, these are regarded as inappropriate for the disposal of the cation exchange resin involved in this project. Thus, a method involving the use of Fenton's Reagent (Hydrogen Peroxide/soluble Iron catalyst) to destroy the resin by wet oxidation has been developed. This process converts 95% of the solid resin to gaseous CO2, thus greatly reducing the volume of radioactive waste that has to be disposed of. However, hydrogen peroxide is an expensive reagent, and is a major component of the cost of any potential plant for the destruction of ion exchange resin. The aim of my project has been to discover a way of improving the efficiency of the destruction of the resin thus reducing the cost involved in the use of hydrogen peroxide. The work on this problem has been concentrated in two main areas:-1) Use of analytical techniques such as NMR and IR to follow the process of the hydrogen peroxide destruction of both resin beads and model systems such as water soluble calixarenes. 2) Use of various physical and chemical techniques in an attempt to improve the overall efficiency of hydrogen peroxide utilization. Examples of these techniques include UV irradiation, both with and without a photocatalyst, oxygen carrying molecules and various stirring regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the investigation of transition metal (TM) ion complexation with hydrophilic membranes composed of copolymers of 4-vinyl pyridine & 4-methyl-4'vinyl- 2,2'-bipyridine with 2-hydroxyethyl methacrylate. The Cu(II), CoCII) & Fe(II) complexes with these coordinating membranes were characterised by a variety of techniques, in order to assess the effect of the polymer on the properties of the complex, and vice versa. A detailed programme of work was instigated into the kinetics of formation for the polymer-bound tris(bipyridyl) iron(II) complex; the rate and extent of complex formation was found to be anion-dependent. This is explained in terms of the influence of the anion on the transport properties and water content of the membrane, the controlling factor in the development of the tris-complex being the equilibrium concentration of Fe(II) in the gel matrix. A series of transport studies were performed with a view to the potential application of complexing hydrogel membranes for aqueous TM ion separations. A number of salts were studied individually and shown to possess a range of permeabilities; the degree of interaction between particular metal-ion:ligand combinations is given by the lag-time observed before steady-state permeation is achieved. However, when two TM salts that individually display different transport properties were studied in combination, they showed similar lag-times & permeabilities, characteristic of the more strongly coordinating metal ion. This 'anti-selective' nature thus renders the membrane systems unsuitable for TM ion separations. Finally, attempts were made to synthesise and immobilise a series of N ,0-donor macrocyclic ligands into hydrogel membranes. Although the functionalisation reactions failed, limited transport data was obtained from membranes in which the ligands were physically entrapped within the polymer matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational mechanics approach has been applied to the orientational behavior of water molecules in a molecular dynamics simulated water–Na + system. The distinctively different statistical complexity of water molecules in the bulk and in the first solvation shell of the ion is demonstrated. It is shown that the molecules undergo more complex orientational motion when surrounded by other water molecules compared to those constrained by the electric field of the ion. However the spatial coordinates of the oxygen atom shows the opposite complexity behavior in that complexity is higher for the solvation shell molecules. New information about the dynamics of water molecules in the solvation shell is provided that is additional to that given by traditional methods of analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft's High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 us). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm2, the average detection time is 23.7 us with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important components in electrochemical storage devices (batteries and supercapacitors) is undoubtedly the electrolyte. The basic function of any electrolyte in these systems is the transport of ions between the positive and negative electrodes. In addition, electrochemical reactions occurring at each electrode/electrolyte interface are the origin of the current generated by storage devices. In other words, performances (capacity, power, efficiency and energy) of electrochemical storage devices are strongly related to the electrolyte properties, as well as, to the affinity for the electrolyte to selected electrode materials. Indeed, the formulation of electrolyte presenting good properties, such as high ionic conductivity and low viscosity, is then required to enhance the charge transfer reaction at electrode/electrolyte interface (e.g. charge accumulation in the case of Electrochemical Double Layer Capacitor, EDLC). For practical and safety considerations, the formulation of novel electrolytes presenting a low vapor pressure, a large liquid range temperature, a good thermal and chemical stabilities is also required.

This lecture will be focused on the effect of the electrolyte formulation on the performances of electrochemical storage devices (Li-ion batteries and supercapacitors). During which, a summary of the physical, thermal and electrochemical data obtained by our group, recently, on the formulation of novel electrolyte-based on the mixture of an ionic liquid (such as EmimNTf2 and Pyr14NTf2) and carbonate or dinitrile solvents will be presented and commented. The impact of the electrolyte formulation on the storage performances of EDLC and Li-ion batteries will be also discussed to further understand the relationship between electrolyte formulation and electrochemical performances. This talk will also be an opportunity to further discuss around the effects of additives (SEI builder: fluoroethylene carbonate and vinylene carbonate), ionic liquids, structure and nature of lithium salt (LiTFSI vs LiPF6) on the cyclability of negative electrode to then enhance the electrolyte formulation. For that, our recent results on TiSnSb and graphite negative electrodes will be presented and discussed, for example 1,2.

1-C. Marino, A. Darwiche1, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit “ Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries” J. Phys.chem. C, 2013, 117, 19302-19313

2- Mouad Dahbi, Fouad Ghamouss, Mérièm Anouti, Daniel Lemordant, François Tran-Van “Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte” 2013, 43, 4, 375-385.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light is the main information about the interstellar medium accessible on Earth. Based on this information one can conclude on the composition of the region where the light originates from, as well as on its history. The requirement for this is that it is possible to identify the different absorption and emission features in the spectrum and assign them to certain molecules, atoms or ions. To enable the identification of the different species, precise spectroscopic investigations of the species in the laboratory are necessary. In this work a new spectroscopic method is presented, which can be used to record pure rotational spectra of mass selected, cold, stored molecular ions. It is based on the idea of state specific attachment of helium atoms to the stored molecular ions. The new technique has been made possible through the development and recent completion of two new 22-pole ion trap instruments in the work group of Laboratory Astrophysics at the University of Cologne. These new instruments have the advantage to reach temperatures as low as 4K compared to the 10K of the predecessor instrument. These low temperatures enable the ternary attachment of helium atoms to the stored molecular ions and by this make it possible to develop this new method for pure rotational spectroscopy. According to this, this work is divided into two parts. The first part deals with the new FELion experiment that was build and characterized in the first part of the thesis. FELion is a cryogenic 22-pole ion trap apparatus, allowing to generate, mass select, store and cool down, and analyze molecular ions. The different components of the instrument, e.g. the Storage Ion Source for generating the ions or the first quadrupole mass filter, are described and characterized in this part. Besides this also the newly developed control and data acquisitions system is introduced. With this instrument the measurements presented in the second part of the work were performed. The second part deals with the new action spectroscopic method of state-selective helium attachment to the stored molecular ions. For a deeper analysis of the new technique the systems of CD+ and helium and HCO+ and helium are investigated in detail. Analytical and numerical models of the process are presented and compared to experimental results. The results of these investigations point to a seemingly very general applicability of the new method to a wide class of molecular ions. In the final part of the thesis measurements of the rotational spectrum of l-C3H+ are presented. These measurements have to be high-lighted, since it was possible for the first time in the laboratory to unambiguously measure four low-lying rotational transitions of l-C3H+. These measurements (Brünken et al. ApJL 783, L4 (2014)) enabled the reliable identification of so far unidentified emision lines observed in several regions of the interstellar medium (Pety et al. Astron. Astrophys. 548, A68 (2012), McGuire et al. The Astrophysical Journal 774, 56 (2013) and McGuire et al. The Astrophysical Journal 783, 36 (2014)).