984 resultados para INDICATOR SPECIES ANALYSIS
Resumo:
A high-resolution sedimentary sequence recovered from the Tagus prodelta has been studied with the objective to reconstruct multi-decadal to centennial-scale climate variability on the western Iberian Margin and to discuss the observations in a wider oceanographic and climatic context. Between ca. 100 BC and AD 400 the foraminiferal fauna and high abundance of Globorotalia inflata indicate advection of subtropical waters via the Azores Current and the winter-time warm Portugal Coastal Current. Between ca. AD 400 and 1350, encompassing the Medieval Climate Anomaly (MCA), enhanced upwelling is indicated by the planktonic foraminiferal fauna, in particular by the high abundance of upwelling indicator species Globigerina bulloides. Relatively light d18O values and high sea surface temperature (SST) (reconstructed from foraminiferal assemblages) point to upwelling of subtropical Eastern North Atlantic Central Water. Between ca. AD 1350 and 1750, i.e. most of the Little Ice Age, relatively heavy d18O values and low reconstructed SST, as well as high abundances of Neogloboquadrina incompta, indicate the advection of cold subpolar waters to the area and a southward deflection of the subpolar front in the North Atlantic, as well as changes in the mode of the North Atlantic Oscillation. In addition, the assemblage composition together with the other proxy data reveals less upwelling and stronger river input than during the MCA. Stronger Azores Current influence on the Iberian Margin and strong anthropogenic effect on the climate after AD 1750 is indicated by the foraminiferal fauna. The foraminiferal assemblage shows a significant change in surface water conditions at ca. AD 1900, including enhanced river runoff, a rapid increase in temperature and increased influence of the Azores Current. The Tagus record displays a high degree of similarity to other North Atlantic records, indicating that the site is influenced by atmospheric-oceanic processes operating throughout the North Atlantic, as well as by local changes.
Resumo:
Botanical data are widely used as terrestrial proxy data for climate reconstructions. Using a newly established method based on probability density functions (pdf-method), the temperature development throughout the last interglacial, the Eemian, is reconstructed for the two German sites Bispingen and Grobern and the French site La Grande Pile. The results are compared with previous reconstructions using other methods. After a steep increase in January as well as July temperatures in the early phase of the interglacial, the reconstructed most probable climate appears to be slightly warmer than today. While the temperature is reconstructed as relatively stable throughout the Eemian, a certain tendency towards cooler January temperatures is evident. January temperatures decreased from approx. 2-3° C in the early part to approx. -3° C in the later part at Bispingen, and from approx. 2° C to approx. -1° C at Grobern and La Grande Pile. A major drop to about -8° C marks the very end of the interglacial at all three sites. While these results agree well with other proxy data and former reconstructions based on the indicator species method, the results differ significantly from reconstructions based on the modern pollen analogue technique ("pollen transfer functions"). The lack of modern analogues is assumed to be the main reason for the discrepancies. It is concluded that any reconstruction method needs to be evaluated carefully in this respect if used for periods lacking modern analogous plant communities.
Resumo:
The injection of gas into sub-seabed aquifers may lead to the displacement of hypoxic and hypersaline fluids (reservoir formation water) major environmental risk. To investigate this risk, the impact of formation water release on the macrofaunal community in a mesocosm experiment at Solbergstrand was conducted. 20 boxcores were exposed to 4 treatments (high salinity, hypoxic, mixed and tidal) during two weeks. The abundance of macrofauna was quantified for each treatment and richness, eveness and biodiversity indices calculated. The data are reported in this dataset.
Resumo:
Debido al futuro incierto de la mayor parte de los fumigantes edáficos usados actualmente en la Unión Europea, que pueden implicar riesgos para la salud humana/animal y el medio ambiente, es necesario desarrollar programas de manejo integrado para el control de plagas de cultivos. Estos programas se incluyen como obligatorios en el Reglamento (EC) No. 1107/2009. De acuerdo con este Reglamento, es obligatoria la evaluación del riesgo asociado al uso de productos fitosanitarios sobre los organismos edáficos no diana y sus funciones, además de llevar a cabo ensayos con diferentes especies indicadoras para obtener datos de toxicidad que puedan ser usados posteriormente en la evaluación de riesgo. Sin embargo, la baja representatividad de algunas de estas especies indicadoras en el área Mediterránea supone una gran limitación. En esta situación, el Panel Científico de Productos Fitosanitarios y sus Residuos de la Autoridad Europea en Seguridad Alimentaria (EFSA), ha señalado la necesidad de modificar los datos ecotoxicológicos requeridos para evaluar los efectos adversos de los productos fitosanitarios de una manera más integrada, incluyendo criterios funcionales y estructurales mediante organismos como bacterias, hongos, protozoos y nematodos. De este modo, la EFSA ha recomendado el uso de los nematodos en la evaluación de la funcionalidad y estructura del suelo. Los nematodos están globalmente distribuidos y son morfológicamente diversos; esto junto con su gran abundancia y diversidad de respuestas a las perturbaciones edáficas, los convierte en indicadores adecuados del estado del suelo. Puesto que los nematodos interaccionan con muchos otros organismos que participan en diferentes eslabones de la red trófica edáfica, jugando papeles importantes en procesos edáficos esenciales en los agroescosistemas, la diversidad de nematodos es, a menudo, usada como indicador biológico de los efectos de las prácticas agrícolas en el estado del suelo. En los últimos años, diferentes índices basados en la comunidad nematológica han facilitado la interpretación de datos complejos sobre la ecología del suelo. Los índices de la red trófica edáfica, basados en la abundancia de grupos funcionales definidos como grupos C-P y grupos tróficos, permiten la evaluación de la funcionalidad de la red trófica edáfica. Por otra parte, la dificultad en la identificación taxonómica de nematodos para explicar su uso limitado como indicadores ecológicos, es ampliamente discutida, y existe cierta controversia en cuanto a la eficacia de los diferentes métodos de identificación de nematodos. Se argumenta que la identificación morfológica es difícil y puede llevar mucho tiempo debido a la falta de expertos especializados, y se afirma que las técnicas moleculares pueden resolver algunas limitaciones de las técnicas morfológicas como la identificación de juveniles. Sin embargo, los métodos de identificación molecular tienen también limitaciones; la mayoría de las bases de datos de secuencias de ADN están fuertemente orientadas hacia los nematodos fitoparásitos, los cuales representan sólo una parte de la comunidad edáfica de nematodos, mientras que hay poca información disponible de nematodos de vida libre a pesar de representar la mayoría de los nematodos edáficos. Este trabajo se centra en el estudio de los efectos de fumigantes edáficos en la funcionalidad del suelo a través del uso de diferentes indicadores basados en la comunidad de nematodos, como los índices de la red trófica, índices de diversidad, abundancia de los taxones más relevantes etc. También se han analizado otros indicadores funcionales relacionados con la supresividad edáfica, el ciclo de nutrientes o la actividad de la microfauna del suelo. En el capítulo 1, la diversidad de nematodos estudiada en una explotación comercial de fresa y sus alrededores durante dos campañas consecutivas en el suroeste español, fue baja en los suelos fumigados con fumigantes químicos ambas campañas y, aunque se observó una recuperación a lo largo de la campaña en la zona tratada, los suelos fumigados mostraron una condición perturbada permanente. La comunidad de nematodos estuvo más asociada al ciclo de nutrientes en la zona sin cultivar que en los suelos cultivados, y se observó poca relación entre la biomasa de las plantas y la estructura de la comunidad de nematodos. Los surcos sin tratar dentro de la zona de cultivo funcionaron como reservorio tanto de nematodos fitoparásitos como beneficiosos; sin embargo estas diferencias entre los surcos y los lomos de cultivo no fueron suficientes para mantener la supresividad edáfica en los surcos. Los suelos tratados fueron menos supresivos que los suelos sin tratar, y se observaron correlaciones positivas entre la supresividad edáfica y la estructura de la red trófica edáfica y la diversidad de nematodos. En el capítulo 2, se evaluaron los efectos de dos pesticidas orgánicos con efecto nematicida y dos nematicidas convencionales sobre las propiedades físico químicas del suelo, la diversidad de nematodos y la biomasa de las plantas en condiciones experimentales en dos tipos de suelo: suelos agrícolas poco diversos y suelos provenientes de una zona de vegetación natural muy diversos. El mayor efecto se observó en el tratamiento con neem, el cual indujo un gran incremento en el número de dauerlarvas en los suelos pobres en nutrientes, mientras que el mismo tratamiento indujo un incremento de poblaciones de nematodos bacterívoros, más estables y menos oportunistas, en los suelos del pinar ricos en materia orgánica. En el capítulo 3, se comparó la eficacia de métodos moleculares (TRFLP, Terminal Restriction Fragment Length Polymorphism) y morfológicos (microscopía de alta resolución) para la identificación de diferentes comunidades denematodos de España e Irlanda. Se compararon estadísticamente las diferencias y similitudes en la diversidad de nematodos, otros indicadores ecológicos y de la red trófica edáfica. Las identificaciones mediante el uso de TRFLP sólo detectó un porcentaje de los taxones presentes en las muestras de suelo identificadas morfológicamente, y los nematodos omnívoros y predadores no fueron detectados molecularmente en nuestro estudio. Los índices calculados en base a los nematodos micróboros mostraron más similitud cuando se identificaron morfológica y molecularmente que los índices basados en grupos tróficos más altos. Nuestros resultados muestran que, al menos con la técnica usada en este estudio, la identificación morfológica de nematodos es una herramienta fiable y más precisa que la identificación molecular, puesto que en general se obtiene una mayor resolución en la identificación de nematodos. En el capítulo 4, se estudiaron también los efectos de los nematicidas químicos sobre la comunidad de nematodos y la biomasa de las plantas en condiciones experimentales de campo, donde se aplicaron en una rotación de cultivo judía-col durante un ciclo de cultivo. Se aplicaron dos tipos de enmiendas orgánicas con el objetivo de mitigar el efecto negativo de los productos fitosanitarios sobre la diversidad edáfica. El efecto de los nematicidas sobre las propiedades del suelo y sobre la comunidad de nematodos fue más agudo que el efecto de las enmiendas. La incorporación de los restos de cosecha al final del ciclo de cultivo de la judía tuvo un gran efecto sobre la comunidad de nematodos, y aunque el número total de nematodos incrementó al final del experimento, se observó una condición perturbada permanente de la red trófica edáfica a lo largo del experimento. ABSTRACT Due to the uncertain future of the soil fumigants most commonly used in the EU, that might involve risks for human/animal health and the environment, there is a need to develop new integrated pest management programs, included as mandatory in the Regulation (EC) No. 1107/2009, to control crop diseases. According to this Regulation, evaluating the risk associated to the use of the plant production products (PPP) on non-target soil fauna and their function, and developing assays with different indicator species to obtain toxicity data to be used in the risk evaluation is mandatory. However, the low representativeness of some of these indicator species in the Mediterranean area is a relevant limitation. In this situation, the Scientific Panel of Plant Protection Products and their Residues of the European Food Safety Authority (EFSA) has pointed out the necessity of modifying the ecotoxicological data set required to evaluate non-target effects of PPP in a more integrated way, including structural and functional endpoints with organism such as bacteria, fungi, protists and nematodes. Thus, EFSA has recommended the use of nematodes in the assessment of the functional and structural features of the soil. Nematodes are globally distributed and morphologically diverse, and due to their high abundance and diversity of responses to soil disturbance, they are suitable indicators of the soil condition. Since nematodes interact with many other organisms as participants in several links of the soil food web, playing important roles in essential soil processes in agroecosystems, nematode diversity is often used as a biological indicator of the effects of agricultural practices on soil condition. In the last years, various indices based on soil nematode assemblages, have facilitated the interpretation of complex soil ecological data. Soil food web indices based on the abundances of functional guilds defined by C-P groups and trophic groups, permit evaluating soil food web functioning. On the other hand, the difficulty of nematode taxonomical identification is commonly argued to explain their limited used as ecological indicators, and there is a certain controversy in terms of the efficacy of various nematode identification methods. It is argued that the morphological identification is difficult and time consuming due to the lack of specialist knowledge, and it is claimed that molecular techniques can solve some limitations of morphological techniques such as the identification of juveniles. Nevertheless, molecular identification methods are limited too, since most of the DNA-based databases are strongly oriented towards plant-parasitic nematodes that represent only a fraction of the soil nematode community, while there is little information available on free-living nematodes, which represent most soil nematodes. This work focuses on the study of the effects of soil fumigants on soil functioning through the use of different indicators based on soil nematode community as soil food web indices, diversity indices, the abundance of more relevant taxa etc. Other functional indicators related to soil suppressiveness, nutrient cycling, or the activity of soil microfauna have been also studied. In chapter 1, nematode diversity assessed in a commercial strawberry farm and its surroundings for two consecutive growing seasons in southern Spain, was low in fumigated soils with chemical pesticides throughout both seasons and, although yearly recovery occurred within the treated fields, fumigated soils showed a permanent perturbed condition. The nematode community was more closely associated to nutrient cycling in the non-cropped than in the cropped soils, and the link between plant biomass and nematode community structure was weak. Non-treated furrows within the treated fields were a reservoir of both beneficial and plant-parasitic nematodes, but such difference between furrows and beds was not enough to maintain more suppressive soil assemblages in the furrows. Treated soils were less suppressive than unmanaged soils, and there was a positive and significant correlation between soil suppressiveness and soil food web structure and diversity. In chapter 2, the effects of two organic pesticides with nematicide effect and two chemical nematicides on soil physicalchemical properties, soil nematode diversity and plant biomass in experimental conditions were assessed in two types of soils: low diversity soils from an agricultural farm, and high diversity soils from a natural vegetation area. The larger effect was observed on the neem treatment, which induced a large boost of dauer juveniles in the nutrient-depleted soil, while the same treatment induced the increase of more stable, less opportunistic, populations of generalist bacterivore nematodes in the pine forest soil, rich in organic matter. In chapter 3, comparison of the efficiency of molecular (TRFLP, Terminal Restriction Fragment Length Polymorphism) and morphological (microscopy at high magnification) identification methods was carried out in different nematode communities from five sites of different land uses in Spain and Ireland. Differences and similarities on nematode diversity and other ecological and soil food web indices assessed by both methods, were statistically compared. Molecular identification with TRFLP only detected a percentage of the taxa present in the soil samples identified morphologically, and omnivores and predators were not detected molecularly in our study. Indices involving microbial feeding nematodes were more similar between identification methods than indices involving higher trophic links. Our results show that, at least with the technique used in this study, identifying nematodes morphologically is a reliable and more precise identification tool than molecular identification, since a higher taxonomic resolution is in general obtained compared to TRFLP. In chapter 4, the effect of chemical nematicides on nematode community descriptors and plant biomass was also studied in field conditions in an experimental area in which dazomet and dimethyl disulfide was applied in a bean-cabbage rotation system for a single season. Organic amendments were incorporated into the soil with the aim of mitigate the negative effect of the pesticides on soil diversity. The effect of the nematicides was much more noticeable than the effect of the amendments on soil properties and nematode community descriptors. The incorporation of bean crop residues into the soil at the end of bean crop cycle affected soil nematode community descriptors to a great extent, and although total number of nematodes increased at the end of the experiment, a permanent perturbed soil food web condition was observed along the experiment.
Resumo:
Saproxylic beetle diversity is high at the Cabañeros National Park (central Spain), where woodland habitats exhibit remarkable heterogeneity. Our aim was to explain the diversity of saproxylic beetles, focusing on species turnover among mature woodland types. We surveyed five woodland types that represented the heterogeneity of the park’s woodland habitats. Beetles were collected using window traps over a period of 20 months. The Jaccard Similarity Index was used as indirect value of beta diversity among woodlands and to test the relation between species turnover and geographical distance. We also identified the contribution of species turnover to landscape diversity by using a partitioning model. Moreover, the presence of mixed woodlands (more than one tree species) allowed us to attempt to valorise the effect of tree species (coupled with their historical management) on species turnover among woodlands. Finally, we looked for different saproxylic beetle preferences for habitat and tree species using an indicator value method. We found that saproxylic beetle species composition varied significantly among the studied woodlands. The variation in species turnover was independent from the distance among woodlands, which suggested that beetle dispersal abilities could not explain this high turnover. Tree species within woodlands were a key factor that increased diversity turnover in woodlands and, consequently, the diversity of the park. Moreover, we found saproxylic beetle species that had different habitat and tree species preferences. We conclude that woodland heterogeneity (highly affected by woodland composition) seems to be the driving force for saproxylic beetle diversity in this protected area.
Resumo:
The “dehesa” is a traditional Iberian agrosilvopastoral ecosystem characterized by the presence of old scattered trees that are considered as “keystone-structures”, which favor the presence of a wide range of biodiversity. We show the high diversity of saproxylic beetles and syrphids (Diptera) in this ecosystem, including red-listed species. We analyzed whether saproxylic species distribution in the “dehesa” was affected by tree density per hectare, dominant tree species or vegetation coverage. Species diversity did not correlate with tree density; however, it was affected by tree species and shrub coverage but in a different way for each taxon. The highest beetle diversity was linked to Quercus pyrenaica, the most managed tree species, with eight indicator species. In contrast, Q. rotundifolia hosted more species of saproxylic syrphids. Regarding vegetation coverage, shrub coverage was the only variable that affected insect richness, again in a different way for both taxa. In contrast, beetle species composition was only affected by dominant tree species whereas syrphid species composition was not affected by tree species or shrub coverage. We concluded that the high diversity of saproxylic insects in the “dehesa” is related to its long history of agrosilvopastoral management, which has generated landscape heterogeneity and preserved old mature trees. However, the richness and composition of different taxa of insects respond in different ways to tree species and vegetation coverage. Consequently, conservation strategies should try to maintain traditional management, and different saproxylic taxa should be used to monitor the effect of management on saproxylic diversity.
Resumo:
Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.
Resumo:
The Everglades are undergoing the world largest wetland restoration project with the aim of returning this system to hydrological conditions in place prior to anthropogenic modifications. Therefore, it is essential to know what these pristine conditions were. In this work, molecular marker (biomarker) distributions and carbon stable isotopic signatures in sediment samples were employed to assess historical environmental changes in Florida Bay over approximately the last 4000 years. Two biomarkers of terrestrial plants, particularly for mangroves (taraxerol and C29 n-alkane), combined with two seagrass proxies (the Paq and the C25/C 27 n-alkan-2-one ratio) revealed a sedimentary environmental shift from freshwater marshes to mangrove swamps and then to seagrass dominated marine ecosystems, likely as a result of sea-level rise in Florida Bay since the Holocene. The maximum values for the Paq and the C 25/C27 n-alkan-2-ones occurred during the 20th century, suggesting that the greatest abundance of seagrass cover is a recent rather than a historical, long-term phenomenon. The greater oscillation in frequency and amplitude for the biomarkers after 1900 potentially reflects an ecosystem under increasing anthropogenic stress. Several algal biomarkers such as C20 highly branched isoprenoids (HBIs), C 25 HBIs and dinosterol indicative of cyanobacteria, diatom and dinoflagellate organic matter inputs respectively, increased dramatically in the latter part of the 20th century and were attributed to recent anthropogenic changes in Florida Bay. ^ The highlight of this work is the development of HBIs as paleo-proxies. As biomarkers of diatoms, the C25 HBIs in the core from the central bay displayed the highest concentration at mid depth, reflecting strong historical inputs of diatom-derived sedimentary OM during that period. In fact, the depth profile of C25 HBIs coincided quite well with historical variations in diatom abundance and variations in diatom species composition in central Florida Bay based on the results of fossil diatom species analysis by microscopy. This study provides evidence that some C25 HBIs can be applied as biomarkers for certain diatom inputs in paleoenvironmental studies. The sources of C20 and C30 HBIs and their potential applicability as paleo-proxies were also investigated and their sources assessed based on their δ13C distributions. ^
Resumo:
The distinctive karstic, freshwater wetlands of the northern Caribbean and Central American region support the prolific growth of calcite-rich periphyton mats. Aside from the Everglades, very little research has been conducted in these karstic wetlands, which are increasingly threatened by eutrophication. This study sought to (i) test the hypothesis that water depth and periphyton total phosphorus (TP) content are both drivers of periphyton biomass in karstic wetland habitats in Belize, Mexico and Jamaica, (ii) provide a taxonomic inventory of the periphytic diatom species in these wetlands and (iii) examine the relationship between periphyton mat TP concentration and diatom assemblage at Everglades and Caribbean locations. ^ Periphyton biomass, nutrient and diatom assemblage data were generated from periphyton mat samples collected from shallow, marl-based wetlands in Belize, Mexico and Jamaica. These data were compared to a larger dataset collected from comparable sites within Everglades National Park. A diatom taxonomic inventory was conducted on the Caribbean samples and a combination of ordination and weighted-averaging modeling techniques were used to compare relationships between periphyton TP concentration, periphyton biomass and diatom assemblage composition among the locations. ^ Within the Everglades, periphyton biomass showed a negative correlation with water depth and mat TP, while periphyton mat percent organic content was positively correlated with these two variables. These patterns were also exhibited within the Belize, Mexico and Jamaica locations, suggesting that water depth and periphyton TP content are both drivers of periphyton biomass in karstic wetland systems within the northern Caribbean region. ^ A total of 146 diatom species representing 39 genera were recorded from the three Caribbean locations, including a distinct core group of species that may be endemic to this habitat type. Weighted averaging models were produced that effectively predicted mat TP concentration from diatom assemblages for both Everglades (R2=0.56) and Caribbean (R2=0.85) locations. There were, however, significant differences among Everglades and Caribbean locations with respect to species TP optima and indicator species. This suggests that although diatoms are effective indicators of water quality in these wetlands, differences in species response to water quality changes can reduce the predictive power of these indices when applied across systems. ^
Resumo:
Limestone-based (karstic) freshwater wetlands of the Everglades, Belize, Mexico, and Jamaica are distinctive in having a high biomass of CaCO3-rich periphyton mats. Diatoms are common components of these mats and show predictable responses to environmental variation, making them good candidates for assessing nutrient enrichment in these naturally ultraoligotrophic wetlands. However, aside from in the Everglades of southern Florida, very little research has been done to document the diatoms and their environmental preferences in karstic Caribbean wetlands, which are increasingly threatened by eutrophication. We identified diatoms in periphyton mats collected during wet and dry periods from the Everglades and similar freshwater karstic wetlands in Belize, Mexico, and Jamaica. We compared diatom assemblage composition and diversity among locations and periods, and the effect of the limiting nutrient, P, on species composition among locations. We used periphyton-mat total P (TP) as a metric of availability. A total of 176 diatom species in 45 genera were recorded from the 4 locations. Twenty-three of these species, including 9 that are considered indicative of Everglades diatom flora, were found in all 4 locations. In Everglades and Caribbean sites, we identified assemblages and indicator species associated with low and high periphyton-mat TP and calculated TP optima and tolerances for each indicator species. TP optima and tolerances of indicator species differed between the Everglades and the Caribbean, but weighted averaging models predicted periphyton-mat TP concentrations from diatom assemblages at Everglades (R2 = 0.56) and Caribbean (R2 = 0.85) locations. These results show that diatoms can be effective indicators of water quality in karstic wetlands of the Caribbean, but application of regionally generated transfer functions to distant sites provides less reliable estimates than locally developed functions.
Resumo:
Ancient Lake Ohrid, located in the southern Balkan Peninsula in Macedonia and Albania is characterized by a high degree of endemism and it is considered to be the oldest lake in Europe. But its exact age (between one and ten million years) and also its origin are so far not known. To unravel these uncertainties an ICDP (International Continental Scientific Drilling Program) drilling project (Scientific Collaboration On Past Speciation Conditions in Ohrid (SCOPSCO)), started in April 2013. In addition to the investigations about the age and origin, other paleolimnological studies, e.g., the reconstruction of past climate and of past lake level changes, should be performed with the drilled cores. Used proxies in such paleolimnological studies are, e.g., ostracodes because they respond sensitively to environmental changes but an accurate knowledge of their preferences and tolerances to specific environmental conditions is necessary for this purpose. So far, this knowledge about the, mostly endemic, Ohrid ostracodes was limited. Thus, within the framework of this thesis, ostracodes and a multiplicity of environmental data were collected in Lake Ohrid and its adjacent waters during four field campaigns. In a total of 47 ostracode species could be detected in the entire study area and 32 of them were found alive in Lake Ohrid. Multivariate statistic identified that water depth, salinity, conductivity, pH, and dissolved oxygen were the main determining factors for ostracode distribution in the entire study area. In Lake Ohrid, the distribution was mainly controlled by water depth, water temperature, and pH. Some ostracodes were identified as strong indicator species for important environmental variables, e.g., water temperature and water depth. A distinctive feature of Lake Ohrid was the finding of the ostracode genus Amnicythere whose species normally inhabit oligo-(meso-)haline waters and this could point to a marine origin of the lake. So far, the specialized endemic ostracodes show the highest abundances and the greatest spatial distribution in Lake Ohrid but during the sampling eight widespread species were found for the first time in the lake. They inhabited mainly the northern part of the lake, where two cities are located and industry and agriculture play a major role, and they were limited to water depths above 50 m and this could be an evidence for an increasing anthropogenic pressure because widespread ostracode species often replace endemic species. To unravel the human impact on Lake Ohrid during the last decades short sediment cores were taken and the multi-proxy study indicated that the lake productivity between the early 1920s and the late 1980s was relatively low. Diatom assemblages indicate a rising productivity in the southern part of Lake Ohrid since the mid 1970s and geochemical proxies and ostracodes point to an increasing productivity since the late 1980s in the southern and in the northern part. A slight increase in the productivity continued until 2009. Noticeable is the fact that since the early 1990s, the increasing productivity and the increasing concentrations of heavy metals correspond to a decreasing number of ostracodes in the northern part of Lake Ohrid. Perhaps, this indicates that living conditions in this lake part became less favorable for the mostly endemic ostracode species. Furthermore, the sediment samples from the cores show relatively high concentrations of arsenic, iron, and nickel. Fluctuations in ostracode assemblages from three longer sediment cores, the longest spans approximately 136 ka, taken in Lake Ohrid, correspond to fluctuations in the productivity, in the carbonate content, of the lake level, and of climate changes. Between the marine isotope stage (MIS) 6 and MIS 2 the number of ostracode valves is very low or the valves were completely absent. This corresponds to a low lake productivity, a low carbonate content, and a low lake level. At the onset of the Holocene, the number of valves increased markedly and this correlates with an increased productivity and carbonate content and a warmer climate. But during the Little Ice Age (LIA), the number of valves dropped again and species which prefer warmer waters disappeared completely. This drop corresponds also to a low productivity. After the LIA, the number of species increased again but since 1895 AD a strong and abrupt decrease is visible. A reason for this could be an increase in the heavy metal concentrations.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.