Clustering in non-parametric multivariate analyses.


Autoria(s): Clarke, KR; Somerfield, PJ; Gorley, RN
Data(s)

18/07/2016

Resumo

Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum  in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.

Formato

text

Identificador

http://plymsea.ac.uk/7133/1/JEMBE-S-16-00318.pdf

Clarke, KR; Somerfield, PJ; Gorley, RN. 2016 Clustering in non-parametric multivariate analyses.. Journal of Experimental Marine Biology and Ecology, 483. 147-155. 10.1016/j.jembe.2016.07.010 <http://dx.doi.org/10.1016/j.jembe.2016.07.010>

Idioma(s)

en

Relação

http://plymsea.ac.uk/7133/

10.1016/j.jembe.2016.07.010

Palavras-Chave #Data and Information #Ecology and Environment #Marine Sciences
Tipo

Publication - Article

PeerReviewed